Lecture 23X-Compatibility with Filtered Colimits

April 6, 2018

Let C be a small pretopos, which we regard as fixed through this lecture. We have fully faithful embeddings

 $\mathfrak{C} \hookrightarrow \operatorname{Shv}(\mathfrak{C}) \hookrightarrow \operatorname{Shv}(\operatorname{Pro}(\mathfrak{C})) \simeq \operatorname{Shv}(\operatorname{Stone}_{\mathfrak{C}}^{\mathrm{fr}}) \simeq \operatorname{Shv}(\operatorname{Stone}_{\mathfrak{C}}^{\mathrm{fr}}) \subseteq \operatorname{Fun}(\operatorname{Stone}_{\mathfrak{C}}^{\mathrm{fr}, \operatorname{op}}, \operatorname{Set}).$

Our goal in this lecture is to prove the following:

Theorem 1. Let \mathscr{F} : Stone^{fr,op}_C \rightarrow Set be a functor. The \mathscr{F} belongs to the essential image of \mathfrak{C} if and only if it satisfies the following pair of conditions:

(a') For every collection of models $\{M_i\}_{i \in I}$ of \mathcal{C} , the canonical map

$$\mathscr{F}(\prod_{i\in I}(\{i\}, M_i)) \to \prod_{i\in I}\mathscr{F}(\{i\}, M_i)$$

is a bijection.

(b') For every object $(X, \mathcal{O}_X) \in \text{Stone}_{\mathbb{C}}^{\text{fr}}$ and every point $x \in X$, the canonical map $\varinjlim_{x \in U} \mathscr{F}(U, \mathcal{O}_X|_U) \to \mathscr{F}(\{x\}, \mathcal{O}_{X,x})$ is a bijection. Here U ranges over all clopen neighborhoods of x in X.

We have already seen that conditions (a') and (b') are necessary. Moreover, we proved in Lecture 22X that conditions (a') and (b') imply that \mathscr{F} is a sheaf on the category $\operatorname{Stone}_{\mathbb{C}}^{\operatorname{fr}}$, and therefore admits an essentially unique extension to a sheaf on the entire category $\operatorname{Stone}_{\mathbb{C}}$. Consequently, to show that \mathscr{F} belongs to the essential image of $\operatorname{Shv}(\mathbb{C})$, it will suffice to show that this extension commutes with filtered colimits (Lecture 15X). In this case, we have seen that condition (a') guarantees that \mathscr{F} also belongs to the essential image of \mathbb{C} (Lecture 21X). We may therefore reformulate Theorem 1 as follows:

Theorem 2. Let \mathscr{F} : Stone^{op}_C \to Set be a sheaf and suppose that $\mathscr{F}|_{\text{Stone}^{\text{fr},\text{op}}_{\mathbb{C}}}$ satisfies conditions (a') and (b') of Theorem 1. Then \mathscr{F} preserves filtered colimits (that is, it carries filtered limits in Stone_C to filtered colimits in Set). Using the criterion of Lecture 17X, we can state this more concretely as follows:

(b) For every object $(X, \mathcal{O}_X) \in \text{Stone}_{\mathfrak{C}}$ and every point $x \in X$, the canonical map

$$\varinjlim_{x \in U} \mathscr{F}(U, \mathfrak{O}_X \mid_U) \to \mathscr{F}(\{x\}, \mathfrak{O}_{X, x})$$

is bijective; here the colimit is taken over all clopen neighborhoods $U \subseteq X$ of the point x.

(c) The composite functor

 $\operatorname{Mod}(\mathcal{C}) \hookrightarrow \operatorname{Stone}_{\mathcal{C}}^{\operatorname{op}} \xrightarrow{\mathscr{F}} \operatorname{Set}$

commutes with filtered colimits.

Proof. We begin by proving (c). Fix a diagram of models $\{M_{\alpha}\}_{\alpha \in I}$ indexed by a directed partially ordered set I. Set $M = \underset{\alpha \in I}{\lim} M_{\alpha}$; we wish to show that the canonical map

$$\rho: \varinjlim_{\alpha} \mathscr{F}(M_{\alpha}) \to \mathscr{F}(M)$$

is bijective.

As in Lecture 22X, we can choose an ultrafilter \mathcal{U} on the set I such that, for each $\beta \in I$, the subset $I_{\geq\beta} = \{\alpha \in I : \alpha \geq \beta\}$ is contained in \mathcal{U} . For each object $C \in \mathcal{C}$ and each index $\beta \in I$, the transition maps in the diagram $\{M_{\alpha}\}_{\alpha \in I}$ determine a canonical map

$$M_{\beta}(C) \to \prod_{\alpha \in I_{\geq \beta}} M_{\alpha}(C) \to \lim_{J \in \mathfrak{U}} \prod_{\alpha \in J} M_{\alpha}(C) = \left(\left(\prod_{\alpha \in I} M_{\alpha}\right) / \mathfrak{U} \right)(C).$$

Passing to the colimit over β , we obtain a map $M(C) \to ((\prod_{\alpha \in I} M_{\alpha})/\mathcal{U})(C)$ depending functorially on C, which we can identify with a map of models $f: M \to (\prod_{\alpha \in I} M_{\alpha})/\mathcal{U}$ Note that the canonical maps $M_{\alpha} \to M$ induce a map g from $(\prod_{\alpha \in I} M_{\alpha})/\mathcal{U}$ to the ultrapower M^{I}/\mathcal{U} .

Note that the canonical maps $M_{\alpha} \to M$ induce a map g from $(\prod_{\alpha \in I} M_{\alpha})/\mathfrak{U}$ to the ultrapower M^{I}/\mathfrak{U} . By construction, the composition $M \xrightarrow{f} (\prod_{\alpha \in I} M_{\alpha})/\mathfrak{U} \xrightarrow{g} M^{I}/\mathfrak{U}$ agrees with the diagonal map $\delta_{M} : M \to M^{I}/\mathfrak{U}$.

We now prove the surjectivity of ρ . Suppose we are given an element $x \in \mathscr{F}(M)$. Recall that conditions (a') and (b') imply that \mathscr{F} commutes with the formation of ultraproducts (see Lecture 22X). We may therefore identify $\mathscr{F}(f)(x) \in \mathscr{F}((\prod_{\alpha \in I} M_{\alpha})/\mathcal{U})$ with an element of $(\prod_{\alpha \in I} \mathscr{F}(M_{\alpha}))/\mathcal{U}$, which we can represent by a tuple of elements $\{x_{\alpha} \in \mathscr{F}(M_{\alpha})\}_{\alpha \in J}$ for some subset $J \subseteq I$ which belong to the ultrafilter \mathcal{U} . Each x_{α} has some image y_{α} in $\mathscr{F}(M)$, and we can identify $\{y_{\alpha}\}_{\alpha \in J}$ with the image of x under the composite map

$$\mathscr{F}(M) \to \mathscr{F}((\prod_{\alpha \in I} M_{\alpha})/\mathfrak{U}) \to \mathscr{F}(M^{I}/\mathfrak{U}).$$

Since this composite map agrees with the diagonal δ_M , the equality $y_\alpha = x$ must hold almost everywhere: that is, we can choose some $J' \subseteq J$ belonging to \mathcal{U} such that $y_\alpha = x$ for $\alpha \in J'$. Then x belongs to the image of the map $\mathscr{F}(M_\alpha) \to \mathscr{F}(M)$ for each $\alpha \in J'$, and in particular belongs to the image of ρ .

We now show that ρ is injective. Fix an index $\beta \in I$ and a pair of elements $x, y \in \mathscr{F}(M_{\beta})$ having the same image in $\mathscr{F}(M)$; we wish to show that x and y have the same image in $\mathscr{F}(M_{\alpha})$ for some $\alpha \geq \beta$. Replacing I by the set $I_{\geq\beta}$, we can assume without loss of generality that β is a least element of I. Note that we have a commutative diagram of models

$$\begin{array}{cccc}
M_{\beta} & & & & M_{\beta}^{I} / \mathcal{U} \\
\downarrow & & & \downarrow \\
M & & & & \downarrow \\
M & & & & f \\
\end{array}$$

It follows that x and y have the same image under the composite map

$$\mathscr{F}(M_{\beta}) \to \mathscr{F}(M_{\beta}^{I}/\mathfrak{U}) \to \mathscr{F}((\prod_{\alpha \in I} M_{\alpha})/\mathfrak{U}) \simeq (\prod_{\alpha \in I} \mathscr{F}(M_{\alpha}))/\mathfrak{U}.$$

In other words, x and y have the same image in $\mathscr{F}(M_{\alpha})$ for almost every $\alpha \in I$; this completes the proof of (c).

We now prove (b). Fix an object $(X, \mathcal{O}_X) \in \text{Stone}_{\mathcal{C}}$ and a point $x \in X$; we wish to show that the canonical map

$$\phi: \varinjlim_{x \in U} \mathscr{F}(U, \mathcal{O}_X \mid_U) \to \mathscr{F}(\{x\}, \mathcal{O}_{X, x})$$

is bijective. We first show that ϕ is injective. Suppose we are given a clopen subset $U \subseteq X$ containing xand a pair of elements $u, v \in \mathscr{F}(U, \mathcal{O}_X |_U)$ with the same image in $\mathscr{F}(\{x\}, \mathcal{O}_{X,x})$. We wish to show that uand v have the same image $\mathscr{F}(U', \mathcal{O}_X |_{U'})$ for some clopen subset $U' \subseteq U$ containing x. Choose a covering $f: (Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X)$, where (Y, \mathcal{O}_Y) is free. Then u and v have the same image in $\mathscr{F}(\{y\}, \mathcal{O}_{Y,y})$ for each point $y \in Y_x = f^{-1}\{x\}$. Using condition (b'), we see that u and v have the same image in $\mathscr{F}(V_y, \mathcal{O}_Y |_{V_y})$ for some clopen neighborhood V_y of y. Covering the fiber Y_x by finitely many sets of the form V_y , we conclude that there is a clopen set $V \subseteq f^{-1}(U)$ containing Y_x such that u and v have the same image in $\mathscr{F}(V, \mathcal{O}_Y |_V)$. Since the map of topological spaces $f: Y \to X$ is closed, we can assume without loss of generality that $V = f^{-1}(U_0)$ for some clopen set $U_0 \subseteq U$ containing x. Note that the map $(V, \mathcal{O}_Y |_V) \to (U_0, \mathcal{O}_X |_{U_0})$ is a covering in Stone_C, so that the map of sets $\mathscr{F}(U_0, \mathcal{O}_X |_{U_0}) \to \mathscr{F}(V, \mathcal{O}_Y |_V)$ is injective. It follows that u and v have the same image in $\mathscr{F}(U_0, \mathcal{O}_X |_{U_0})$, as desired.

We now show that ϕ is surjective. Fix an element $s \in \mathscr{F}(\{x\}, \mathcal{O}_{X,x})$. For each point $y \in Y_x$, let s_y denote the image of s in $\mathscr{F}(\{y\}, \mathcal{O}_{Y,y})$. Using assumption (b'), we can lift s_y to an element $\tilde{s}_y \in \mathscr{F}(V_y, \mathcal{O}_Y |_{V_y})$ for some clopen set $V_y \subseteq Y$ containing y. Applying the first part of the proof to the object $(Y_x, \mathcal{O}_Y |_{Y_x})$, we conclude that there is clopen set $T_y \subseteq Y_x$ containing y such that \tilde{s}_y and s have the same image in $\mathscr{F}(T_y, \mathcal{O}_Y |_{T_y})$. Shrinking V_y if necessary, we may assume that $T_y = V_y \cap Y_x$. Since Y_x is compact, it is contained in the union $V = V_{y_1} \cup \cdots \cup V_{y_n}$ for finitely many elements $y_1, \ldots, y_n \in Y_x$. By passing to a disjoint refinement of the covering of V by the sets V_{y_i} , we can amalgamate the sections $\{\tilde{s}_y\}$ to a single element $\tilde{s} \in \mathscr{F}(V, \mathcal{O}_Y |_V)$ such that s and \tilde{s} have the same image in $\mathscr{F}(Y_x, \mathcal{O}_Y |_{Y_x})$.

Let us abuse notation by identifying (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) with objects of Pro(\mathcal{C}), and form the fiber product $(Y, \mathcal{O}_Y) \times_{(X, \mathcal{O}_X)} (Y, \mathcal{O}_Y)$ in Pro(\mathcal{C}). Choose an effective epimorphism

$$(Z, \mathcal{O}_Z) \to (Y, \mathcal{O}_Y) \times_{(X, \mathcal{O}_X)} (Y, \mathcal{O}_Y),$$

where $(Z, \mathcal{O}_Z) \in \text{Stone}_{\mathcal{C}}$. We then have a pair of projection maps $\pi, \pi' : Z \to Y$. Let t and t' denote the images of \tilde{s} in $\mathscr{F}(\pi^{-1}(V), \mathcal{O}_Z|_{\pi^{-1}(V)})$ and $\mathscr{F}(\pi'^{-1}(V), \mathcal{O}_Z|_{\pi'^{-1}(V)})$, respectively. Note that t and t' have the same image in $\mathscr{F}(\{z\}, \mathcal{O}_{Z,z})$ for each $z \in Z \times_X \{x\}$. Using the first part of the proof, we see that there exists a clopen set $W \subseteq \pi^{-1}(V) \cap \pi'^{-1}(V)$ containing $Z \times_X \{x\}$ such that t and t' have the same image in $\mathscr{F}(W, \mathcal{O}_Z|_W)$. Since the projection maps $Z \to X \leftarrow Y$ are closed, we can choose a clopen subset $U \subseteq X$ containing x such that $U \times_X Y \subseteq V$ and $U \times_X Z \subseteq W$. Replacing V and W by the inverse images of U, we can invoke our assumption that \mathscr{F} is a sheaf to deduce that the diagram of sets

$$\mathscr{F}(U, \mathfrak{O}_X|_U) \to \mathscr{F}(V, \mathfrak{O}_Y|_V) \rightrightarrows \mathscr{F}(Z, \mathfrak{O}_Z|_W)$$

is an equalizer, so that $\tilde{s} \in \mathscr{F}(V, \mathfrak{O}_Y |_V)$ lifts uniquely to an element $s' \in \mathscr{F}(U, \mathfrak{O}_X |_U)$. Using the commutativity of the diagram

(and the fact that the right vertical map is injective), we deduce that the upper horizontal map carries s' to s, so that s belongs to the image of ϕ .