
Lecture 23X-Compatibility with Filtered Colimits

April 6, 2018

Let C be a small pretopos, which we regard as fixed through this lecture. We have fully faithful embeddings

C ↪→ Shv(C) ↪→ Shv(Pro(C)) ' Shv(StoneC) ' Shv(StonefrC) ⊆ Fun(Stonefr,opC , Set).

Our goal in this lecture is to prove the following:

Theorem 1. Let F : Stonefr,opC → Set be a functor. The F belongs to the essential image of C if and only
if it satisfies the following pair of conditions:

(a′) For every collection of models {Mi}i∈I of C, the canonical map

F (
∐
i∈I

({i},Mi))→
∏
i∈I

F ({i},Mi)

is a bijection.

(b′) For every object (X,OX) ∈ StonefrC and every point x ∈ X, the canonical map lim−→x∈U F (U,OX |U )→
F ({x},OX,x) is a bijection. Here U ranges over all clopen neighborhoods of x in X.

We have already seen that conditions (a′) and (b′) are necessary. Moreover, we proved in Lecture 22X
that conditions (a′) and (b′) imply that F is a sheaf on the category StonefrC , and therefore admits an
essentially unique extension to a sheaf on the entire category StoneC. Consequently, to show that F belongs
to the essential image of Shv(C), it will suffice to show that this extension commutes with filtered colimits
(Lecture 15X). In this case, we have seen that condition (a′) guarantees that F also belongs to the essential
image of C (Lecture 21X). We may therefore reformulate Theorem 1 as follows:

Theorem 2. Let F : StoneopC → Set be a sheaf and suppose that F |Stonefr,op
C

satisfies conditions (a′) and

(b′) of Theorem 1. Then F preserves filtered colimits (that is, it carries filtered limits in StoneC to filtered
colimits in Set). Using the criterion of Lecture 17X, we can state this more concretely as follows:

(b) For every object (X,OX) ∈ StoneC and every point x ∈ X, the canonical map

lim−→
x∈U

F (U,OX |U )→ F ({x},OX,x)

is bijective; here the colimit is taken over all clopen neighborhoods U ⊆ X of the point x.

(c) The composite functor

Mod(C) ↪→ StoneopC
F−→ Set

commutes with filtered colimits.
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Proof. We begin by proving (c). Fix a diagram of models {Mα}α∈I indexed by a directed partially ordered
set I. Set M = lim−→α∈IMα; we wish to show that the canonical map

ρ : lim−→
α

F (Mα)→ F (M)

is bijective.
As in Lecture 22X, we can choose an ultrafilter U on the set I such that, for each β ∈ I, the subset

I≥β = {α ∈ I : α ≥ β} is contained in U. For each object C ∈ C and each index β ∈ I, the transition maps
in the diagram {Mα}α∈I determine a canonical map

Mβ(C)→
∏

α∈I≥β

Mα(C)→ lim−→
J∈U

∏
α∈J

Mα(C) = ((
∏
α∈I

Mα)/U)(C).

Passing to the colimit over β, we obtain a map M(C) → ((
∏
α∈IMα)/U)(C) depending functorially on C,

which we can identify with a map of models f : M → (
∏
α∈IMα)/U

Note that the canonical maps Mα → M induce a map g from (
∏
α∈IMα)/U to the ultrapower M I/U.

By construction, the composition M
f−→ (

∏
α∈IMα)/U

g−→ M I/U agrees with the diagonal map δM : M →
M I/U.

We now prove the surjectivity of ρ. Suppose we are given an element x ∈ F (M). Recall that conditions
(a′) and (b′) imply that F commutes with the formation of ultraproducts (see Lecture 22X). We may therefore
identify F (f)(x) ∈ F ((

∏
α∈IMα)/U) with an element of (

∏
α∈I F (Mα))/U, which we can represent by a

tuple of elements {xα ∈ F (Mα)}α∈J for some subset J ⊆ I which belong to the ultrafilter U. Each xα has
some image yα in F (M), and we can identify {yα}α∈J with the image of x under the composite map

F (M)→ F ((
∏
α∈I

Mα)/U)→ F (M I/U).

Since this composite map agrees with the diagonal δM , the equality yα = x must hold almost everywhere:
that is, we can choose some J ′ ⊆ J belonging to U such that yα = x for α ∈ J ′. Then x belongs to the
image of the map F (Mα)→ F (M) for each α ∈ J ′, and in particular belongs to the image of ρ.

We now show that ρ is injective. Fix an index β ∈ I and a pair of elements x, y ∈ F (Mβ) having the
same image in F (M); we wish to show that x and y have the same image in F (Mα) for some α ≥ β.
Replacing I by the set I≥β , we can assume without loss of generality that β is a least element of I. Note
that we have a commutative diagram of models

Mβ
δ //

��

M I
β/U

��
M

f // (
∏
α∈IMα)/U .

It follows that x and y have the same image under the composite map

F (Mβ)→ F (M I
β/U)→ F ((

∏
α∈I

Mα)/U) ' (
∏
α∈I

F (Mα))/U .

In other words, x and y have the same image in F (Mα) for almost every α ∈ I; this completes the proof of
(c).

We now prove (b). Fix an object (X,OX) ∈ StoneC and a point x ∈ X; we wish to show that the
canonical map

φ : lim−→
x∈U

F (U,OX |U )→ F ({x},OX,x)
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is bijective. We first show that φ is injective. Suppose we are given a clopen subset U ⊆ X containing x
and a pair of elements u, v ∈ F (U,OX |U ) with the same image in F ({x},OX,x). We wish to show that u
and v have the same image F (U ′,OX |U ′) for some clopen subset U ′ ⊆ U containing x. Choose a covering
f : (Y,OY ) → (X,OX), where (Y,OY ) is free. Then u and v have the same image in F ({y},OY,y) for each
point y ∈ Yx = f−1{x}. Using condition (b′), we see that u and v have the same image in F (Vy,OY |Vy ) for
some clopen neighborhood Vy of y. Covering the fiber Yx by finitely many sets of the form Vy, we conclude
that there is a clopen set V ⊆ f−1(U) containing Yx such that u and v have the same image in F (V,OY |V ).
Since the map of topological spaces f : Y → X is closed, we can assume without loss of generality that
V = f−1(U0) for some clopen set U0 ⊆ U containing x. Note that the map (V,OY |V ) → (U0,OX |U0

) is a
covering in StoneC, so that the map of sets F (U0,OX |U0

)→ F (V,OY |V ) is injective. It follows that u and
v have the same image in F (U0,OX |U0

), as desired.
We now show that φ is surjective. Fix an element s ∈ F ({x},OX,x). For each point y ∈ Yx, let sy denote

the image of s in F ({y},OY,y). Using assumption (b′), we can lift sy to an element s̃y ∈ F (Vy,OY |Vy )
for some clopen set Vy ⊆ Y containing y. Applying the first part of the proof to the object (Yx,OY |Yx),
we conclude that there is clopen set Ty ⊆ Yx containing y such that s̃y and s have the same image in
F (Ty,OY |Ty ). Shrinking Vy if necessary, we may assume that Ty = Vy ∩ Yx. Since Yx is compact, it is
contained in the union V = Vy1 ∪ · · · ∪ Vyn for finitely many elements y1, . . . , yn ∈ Yx. By passing to a
disjoint refinement of the covering of V by the sets Vyi , we can amalgamate the sections {s̃y} to a single
element s̃ ∈ F (V,OY |V ) such that s and s̃ have the same image in F (Yx,OY |Yx).

Let us abuse notation by identifying (X,OX) and (Y,OY ) with objects of Pro(C), and form the fiber
product (Y,OY )×(X,OX) (Y,OY ) in Pro(C). Choose an effective epimorphism

(Z,OZ)→ (Y,OY )×(X,OX) (Y,OY ),

where (Z,OZ) ∈ StoneC. We then have a pair of projection maps π, π′ : Z → Y . Let t and t′ denote the
images of s̃ in F (π−1(V ),OZ |π−1(V )) and F (π′−1(V ),OZ |π′−1(V )), respectively. Note that t and t′ have
the same image in F ({z},OZ,z) for each z ∈ Z ×X {x}. Using the first part of the proof, we see that there
exists a clopen set W ⊆ π−1(V ) ∩ π′−1(V ) containing Z ×X {x} such that t and t′ have the same image in
F (W,OZ |W ). Since the projection maps Z → X ← Y are closed, we can choose a clopen subset U ⊆ X
containing x such that U ×X Y ⊆ V and U ×X Z ⊆W . Replacing V and W by the inverse images of U , we
can invoke our assumption that F is a sheaf to deduce that the diagram of sets

F (U,OX |U )→ F (V,OY |V ) ⇒ F (Z,OZ |W )

is an equalizer, so that s̃ ∈ F (V,OY |V ) lifts uniquely to an element s′ ∈ F (U,OX |U ). Using the commuta-
tivity of the diagram

F (U,OX |U ) //

��

F ({x},OX,x)

��
F (V,OY |V ) // F (Yx,OY |Yx)

(and the fact that the right vertical map is injective), we deduce that the upper horizontal map carries s′ to
s, so that s belongs to the image of φ.
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