Lecture 22X-Embedding into an Ultrapower

April 6, 2018

Let \mathcal{C} be a small pretopos, which we regard as fixed through this lecture. We let $\operatorname{Pro}{ }^{\mathrm{fr}}(\mathcal{C})$ denote the full subcategory of $\operatorname{Pro}(\mathbb{C})$ spanned by the free objects (that is, those which can be written as coproducts of models), and we define Stone $\mathcal{e}_{\mathcal{C}}^{\mathrm{fr}} \subseteq$ Stonee similarly, so that we have an equivalence $\operatorname{Pro}{ }^{\mathrm{fr}}(\mathcal{C}) \simeq$ Stone $_{\mathcal{C}}{ }^{\mathrm{fr}}$. We have fully faithful embeddings

We have seen that every functor $\mathscr{F}:$ Stone $_{e}{ }_{e}^{\mathrm{fr}, \text { op }} \rightarrow$ Set which belongs to the essential image of the composite embedding must satisfy the following pair of conditions:
(a^{\prime}) For every collection of models $\left\{M_{i}\right\}_{i \in I}$ of \mathfrak{C}, the canonical map

$$
\mathscr{F}\left(\coprod_{i \in I}\left(\{i\}, M_{i}\right)\right) \rightarrow \prod_{i \in I} \mathscr{F}\left(\{i\}, M_{i}\right)
$$

is a bijection.
(b^{\prime}) For every object $\left(X, \mathcal{O}_{X}\right) \in$ Stone $_{\mathcal{C}}^{\mathrm{fr}}$ and every point $x \in X$, the canonical map ${\underset{\sim}{\lim }}_{x \in U} \mathscr{F}\left(U,\left.\mathcal{O}_{X}\right|_{U}\right) \rightarrow$ $\mathscr{F}\left(\{x\}, \mathcal{O}_{X, x}\right)$ is a bijection. Here U ranges over all clopen neighborhoods of x in X.
Remark 1. Suppose that $\mathscr{F}:$ Stone $\mathrm{fr}_{\mathrm{e}}^{\mathrm{f}, \mathrm{op}} \rightarrow$ Set satisfies conditions $\left(a^{\prime}\right)$ and $\left(b^{\prime}\right)$. Let $\left\{M_{i}\right\}_{i \in I}$ be a collection of models of M, and set $\left(X, \mathcal{O}_{X}\right)=\coprod_{i \in I}\left(\{i\}, M_{i}\right)$ in Stonee. Suppose that x is a point of X, corresponding to an ultrafilter \mathfrak{U} on the set I. Then every clopen neighborhood of x in X has the form $U_{J}=\left\{\mathcal{U}^{\prime} \in X: J \in \mathfrak{U}^{\prime}\right\}$, where J belongs to the ultrafilter \mathcal{U}. We then compute

$$
\begin{aligned}
\mathscr{F}\left(\left(\prod_{i \in I} M_{i}\right) / \mathcal{U}\right) & \simeq \mathscr{F}\left(\{x\}, \mathcal{O}_{X, x}\right) \\
& \simeq \underset{x \in U_{J}}{\lim _{\vec{F}}} \mathscr{F}\left(U_{J},\left.\mathcal{O}_{X}\right|_{U_{J}}\right) \\
& \simeq \underset{\overrightarrow{J \in U}}{ } \mathscr{F}\left(\coprod_{i \in J}\left(\{i\}, M_{i}\right)\right) \\
& \simeq \underset{\overrightarrow{J \in U}}{\lim _{i \in J}} \mathscr{F}\left(\{i\}, M_{i}\right) \\
& \simeq\left(\prod_{i \in I} \mathscr{F}\left(M_{i}\right)\right) / \mathcal{U} .
\end{aligned}
$$

In other words, the functor $\left.\mathscr{F}\right|_{\operatorname{Mod}(\mathcal{C})}$ "commutes with ultraproducts". We will return to this observation later.
Remark 2. Since every object of Stone ${ }_{\mathrm{e}}^{\mathrm{fr}}$ can be written as a coproduct of models, condition (a^{\prime}) is equivalent to the following a priori stronger condition:
$\left(a^{\prime \prime}\right)$ The functor \mathscr{F} carries coproducts in Stone ${ }_{\mathcal{C}}^{\mathrm{fr}}$ to products in Set.
Over the next few lectures, we will prove the converse: any functor $\mathscr{F}:$ Stone $_{\mathrm{C}}{ }^{\mathrm{fr}, \text { op }} \rightarrow$ Set satisfying (a^{\prime}) and $\left(b^{\prime}\right)$ arises from an object of \mathcal{C}. In this lecture, we will carry out the first step by proving the following:
Theorem 3. Let $\mathscr{F}:$ Stone $_{e}{ }^{\mathrm{fr}, \text { op }} \rightarrow$ Set be a functor satisfying $\left(a^{\prime}\right)$ and $\left(b^{\prime}\right)$. Then \mathscr{F} also satisfies the following:
(d) For every elementary morphism $f: M \rightarrow N$ in $\operatorname{Mod}(\mathcal{C})$, we have an equalizer diagram

$$
\mathscr{F}(M) \rightarrow \mathscr{F}(N) \rightrightarrows \prod \mathscr{F}(P)
$$

where the product is taken over all commutative diagrams $M \xrightarrow{f} N \rightrightarrows P$.
Corollary 4. Let \mathscr{F} : Stone $\mathrm{e}^{\mathrm{fr}, \text { op }} \rightarrow$ Set be a functor satisfying $\left(a^{\prime}\right)$ and $\left(b^{\prime}\right)$. Then \mathscr{F} is a sheaf (with respect to the topology on Stone ${ }_{\mathrm{e}}^{\mathrm{fr}}$ generated by the finite coverings in Stonee).

Proof. This follows by exactly the same argument we used in Lecture 19X, replacing Stonee by the subcategory Stone ${ }_{\mathrm{e}}^{\mathrm{fr}}$.

We begin with some preliminaries. Suppose we are given a collection of models $\left\{M_{i}\right\}_{i \in I}$ of \mathcal{C}, indexed by a set I. In Lecture 20X, we defined the ultraproduct $\left(\prod_{i \in I} M_{i}\right) / \mathcal{U}$ associated to an ultrafilter \mathcal{U} on I : it is the functor from \mathcal{C} to Set given by the construction $C \mapsto\left(\prod_{i \in I} M_{i}(C)\right) / \mathcal{U}$. In the special case where each M_{i} is equal to some fixed model M, we denote this ultraproduct by M^{I} / U and refer to it as the ultrapower of M with respect to the ultrafilter \mathcal{U}. Note that the diagonal embedding $M(C) \mapsto M(C)^{I}$ induces a map

$$
M(C) \rightarrow M(C)^{I} \rightarrow \underset{J \in \mathfrak{U}}{\lim } M(C)^{J}=\left(M^{I} / \mathcal{U}\right)(C) .
$$

This map depends functorially on C, and can therefore be regarded as a morphism of models $\delta_{M}: M \rightarrow$ M^{I} / U. We will deduce Theorem 3 from the following:
Theorem 5. Let $f: M \rightarrow N$ be an elementary map between models of \mathcal{C}. Then there exists a set I, an ultrafilter U on I, and a map of models $g: N \rightarrow M^{I} /$ U for which the composite map

$$
M \xrightarrow{f} N \xrightarrow{g} M^{I} / U
$$

coincides with the diagonal embedding δ_{M}.
Exercise 6. Let M be a model of \mathcal{C}, I a set, and \mathcal{U} an ultrafilter on I. Show that the map of models $\delta_{M}: M \rightarrow M^{I} / U$ is elementary.
Proof of Theorem 3 from Theorem 5. Suppose that $f: M \rightarrow N$ is an elementary map between models of \mathcal{C}, and that we are given a point $\eta \in \mathscr{F}(N)$ which belongs to the equalizer

$$
\operatorname{Eq}\left(\mathscr{F}(N) \rightrightarrows \prod_{M \rightarrow N \rightrightarrows P} \mathscr{F}(P)\right) .
$$

We wish to show that η can be lifted uniquely to an element of $\mathscr{F}(M)$.
Choose $g: N \rightarrow M^{I} / U$ as in Theorem 5, and let $\bar{\eta}$ denote the image of η in $\mathscr{F}\left(M^{I} / U\right)$. Since \mathscr{F} commutes with ultraproducts (Remark 1), we can identify $\bar{\eta}$ with an element of $\mathscr{F}(M)^{I} / \mathcal{U}$. Choose a representative $\left\{\eta_{i} \in \mathscr{F}(M)\right\}_{i \in I}$ for $\bar{\eta}$. We have a commutative diagram of models

Consequently, our hypothesis on η guarantees that the maps

$$
\delta_{M}^{I} / \mathcal{U}, \delta_{M^{I} / \mathcal{U}}: M^{I} / \mathcal{U} \rightarrow\left(M^{I} / \mathcal{U}\right)^{I} / \mathcal{U}
$$

carry $\bar{\eta}$ to the same element of

$$
\mathscr{F}\left(\left(M^{I} / \mathcal{U}\right)^{I} / \mathcal{U}\right) \simeq\left(\mathscr{F}(M)^{I} / \mathcal{U}\right)^{I} / \mathcal{U}
$$

Unwinding the definitions, this tells us that the set $\left\{i \in I:\left\{j \in I: \eta_{i}=\eta_{j}\right\} \in \mathcal{U}\right\}$ belongs to \mathcal{U}. In particular, it is nonempty: that is, there exists some $i \in I$ such that $\eta_{i}=\eta_{j}$ for almost all $j \in I$ (with respect to the ultrafilter $\mathcal{U})$. We will complete the proof by showing that η is the image of $\eta_{i} \in \mathscr{F}(M)$. To prove this, we use the commutativity of the diagram

to observe that the maps $\left(f^{I} / \mathcal{U}\right) \circ g, \delta_{N}: N \rightarrow N^{I} / \mathcal{U}$ agree on M, and therefore carry η to the same element of N^{I} / \mathcal{U}. It follows that the set $\left\{j \in J: \mathscr{F}(f)\left(\eta_{j}\right)=\eta\right\}$ belongs to \mathcal{U}, and therefore has nonempty intersection with the set $\left\{j \in J: \eta_{j}=\eta_{i}\right\}$.

Proof of Theorem 5. To avoid confusion, let us use the notation T_{M} to denote the image of a model $M \in$ $\operatorname{Mod}(\mathcal{C})$ under the inclusion $\operatorname{Mod}(\mathcal{C})^{\text {op }} \hookrightarrow \operatorname{Pro}(\mathcal{C})$. The elementary map $f: M \rightarrow N$ can then be identified with a map of pro-objects $T_{N} \rightarrow T_{M}$, which we will denote by T_{f}. Our assumption that f is elementary guarantees that T_{f} is an effective epimorphism in $\operatorname{Pro}(\mathcal{C})$, and can therefore be realized as the limit of an inverse system $\left\{u_{\alpha}: C_{\alpha} \rightarrow D_{\alpha}\right\}$, where each u_{α} is an effective epimorphism in \mathcal{C}. Without loss of generality, we may assume that this inverse limit is indexed by the opposite of partially ordered set I which is directed (so that every finite subset of I has an upper bound in I).

For each $\alpha \in I$, set $P_{\alpha}=C_{\alpha} \times_{D_{\alpha}} T_{M}$ (where the fiber product is formed in $\operatorname{Pro}(\mathcal{C})$. Since M is a model, each of the maps $T_{M} \rightarrow D_{\alpha}$ factors through u_{α}. A choice of factorization determines a section $s_{\alpha}: T_{M} \rightarrow P_{\alpha}$ of the projection map $P_{\alpha} \rightarrow T_{M}$. To avoid confusion, let us write F_{α} for the image of P_{α} in the opposite category Fun ${ }^{\text {lex }}(\mathcal{C}, \mathcal{S e t}) \simeq \operatorname{Pro}(\mathcal{C})^{\text {op }}$, so that each s_{α} can be viewed as a natural transformation of functors $F_{\alpha} \rightarrow M$. Note that we have $T_{N} \simeq \lim _{\lim _{\alpha}} P_{\alpha}$ in $\operatorname{Pro}(\mathcal{C})$, so that $N \simeq \underset{\rightarrow}{\lim _{\alpha}} F_{\alpha}$ in Fun $^{\text {lex }}(\mathcal{C}$, Set $)$.

Let \mathcal{U}_{0} be the collection of all subsets $J \subseteq I$ for which there exists some $\alpha \in I$ such that $\{\beta \in I: \beta \geq$ $\alpha\} \subseteq J$. Our assumption that I is directed guarantees that \mathcal{U}_{0} is a (nontrivial) filter on I. We can therefore choose an ultrafilter \mathcal{U} which contains \mathcal{U}_{0}. For each object $C \in \mathcal{C}$ and each $\alpha \in I$, we have a canonical $\operatorname{map} F_{\alpha}(C) \rightarrow \prod_{\beta>\alpha} F_{\beta}(C)$ given by the transition maps in the direct system $\left\{F_{\beta}(C)\right\}_{\beta \in I}$, which induces a map from $F_{\alpha}(C)$ to the ultraproduct $\left(\prod_{\beta \in I} F_{\beta}(C)\right) / \mathcal{U}$. This construction depends functorially on α, and therefore yields a map

$$
N(C)=\underset{\alpha \in I}{\lim } F_{\alpha}(C) \rightarrow \underset{\alpha \in I}{\lim }\left(\prod_{\beta \geq \alpha} F_{\beta}(C)\right) \rightarrow \underset{J \in \mathcal{U}}{\lim } \prod_{\beta \in J} F_{\beta}(C)=\left(\prod_{\beta \in I} F_{\beta}(C)\right) / \mathcal{U} .
$$

Composing with the map

$$
\left(\prod_{\beta \in I} F_{\beta}(C)\right) / \mathcal{U} \xrightarrow{\left\{s_{\beta}\right\}}\left(\prod_{\beta \in I} M(C)\right) / \mathcal{U}=\left(M^{I} / \mathcal{U}\right)(C),
$$

we obtain a map $N(C) \rightarrow\left(M^{I} / \mathcal{U}\right)(C)$ which depends functorially on C, and can therefore be regarded as a map of models $N \rightarrow M^{I} / \mathcal{U}$. Our assumption that each s_{α} is a section of the projection map guarantees the the composition $M \rightarrow N \rightarrow M^{I} / \mathcal{U}$ agrees with the diagonal embedding.

