Lecture 22X-Embedding into an Ultrapower

April 6, 2018

Let \mathcal{C} be a small pretopos, which we regard as fixed through this lecture. We let $\operatorname{Pro}^{\mathrm{fr}}(\mathcal{C})$ denote the full subcategory of $\operatorname{Pro}(\mathcal{C})$ spanned by the *free* objects (that is, those which can be written as coproducts of models), and we define $\operatorname{Stone}_{\mathcal{C}}^{\mathrm{fr}} \subseteq \operatorname{Stone}_{\mathcal{C}}$ similarly, so that we have an equivalence $\operatorname{Pro}^{\mathrm{fr}}(\mathcal{C}) \simeq \operatorname{Stone}_{\mathcal{C}}^{\mathrm{fr}}$. We have fully faithful embeddings

$$\mathcal{C} \hookrightarrow \operatorname{Shv}(\mathcal{C}) \hookrightarrow \operatorname{Shv}(\operatorname{Pro}(\mathcal{C})) \simeq \operatorname{Shv}(\operatorname{Pro}^{\operatorname{fr}}(\mathcal{C})) \simeq \operatorname{Shv}(\operatorname{Stone}_{\mathcal{C}}^{\operatorname{fr}}) \subseteq \operatorname{Fun}(\operatorname{Stone}_{\mathcal{C}}^{\operatorname{fr},\operatorname{op}}, \operatorname{Set}).$$

We have seen that every functor \mathscr{F} : Stone^{fr,op}_{\mathcal{C}} \rightarrow Set which belongs to the essential image of the composite embedding must satisfy the following pair of conditions:

(a') For every collection of models $\{M_i\}_{i\in I}$ of \mathcal{C} , the canonical map

$$\mathscr{F}(\coprod_{i\in I}(\{i\}, M_i)) \to \prod_{i\in I} \mathscr{F}(\{i\}, M_i)$$

is a bijection.

(b') For every object $(X, \mathcal{O}_X) \in \text{Stone}_{\mathcal{C}}^{\text{fr}}$ and every point $x \in X$, the canonical map $\varinjlim_{x \in U} \mathscr{F}(U, \mathcal{O}_X |_U) \to \mathscr{F}(\{x\}, \mathcal{O}_{X,x})$ is a bijection. Here U ranges over all clopen neighborhoods of x in X.

Remark 1. Suppose that \mathscr{F} : Stone^{fr,op}_C \to Set satisfies conditions (a') and (b'). Let $\{M_i\}_{i \in I}$ be a collection of models of M, and set $(X, \mathcal{O}_X) = \coprod_{i \in I} (\{i\}, M_i)$ in Stone_C. Suppose that x is a point of X, corresponding to an ultrafilter \mathcal{U} on the set I. Then every clopen neighborhood of x in X has the form $U_J = \{\mathcal{U}' \in X : J \in \mathcal{U}'\}$, where J belongs to the ultrafilter \mathcal{U} . We then compute

$$\begin{aligned} \mathscr{F}((\prod_{i \in I} M_i)/\mathfrak{U}) &\simeq & \mathscr{F}(\{x\}, \mathfrak{O}_{X,x}) \\ &\simeq & \lim_{x \in U_J} \mathscr{F}(U_J, \mathfrak{O}_X \mid_{U_J}) \\ &\simeq & \lim_{J \in \mathfrak{U}} \mathscr{F}(\prod_{i \in J} (\{i\}, M_i)) \\ &\simeq & \lim_{J \in \mathfrak{U}} \prod_{i \in J} \mathscr{F}(\{i\}, M_i) \\ &\simeq & (\prod_{i \in I} \mathscr{F}(M_i))/\mathfrak{U}. \end{aligned}$$

In other words, the functor $\mathscr{F}|_{Mod(\mathcal{C})}$ "commutes with ultraproducts". We will return to this observation later.

Remark 2. Since every object of $\text{Stone}_{\mathcal{C}}^{\text{fr}}$ can be written as a coproduct of models, condition (a') is equivalent to the following *a priori* stronger condition:

(a'') The functor \mathscr{F} carries coproducts in Stone^{fr}_C to products in Set.

Over the next few lectures, we will prove the converse: any functor \mathscr{F} : Stone^{fr,op}_C \rightarrow Set satisfying (a') and (b') arises from an object of \mathscr{C} . In this lecture, we will carry out the first step by proving the following:

Theorem 3. Let \mathscr{F} : Stone^{fr,op}_C \to Set be a functor satisfying (a') and (b'). Then \mathscr{F} also satisfies the following:

(d) For every elementary morphism $f: M \to N$ in Mod(\mathfrak{C}), we have an equalizer diagram

$$\mathscr{F}(M) \to \mathscr{F}(N) \rightrightarrows \prod \mathscr{F}(P)$$

where the product is taken over all commutative diagrams $M \xrightarrow{f} N \rightrightarrows P$.

Corollary 4. Let \mathscr{F} : Stone^{fr,op}_C \rightarrow Set be a functor satisfying (a') and (b'). Then \mathscr{F} is a sheaf (with respect to the topology on Stone^{fr}_C generated by the finite coverings in Stone_C).

Proof. This follows by exactly the same argument we used in Lecture 19X, replacing $\text{Stone}_{\mathbb{C}}^{\text{fr}}$ by the subcategory $\text{Stone}_{\mathbb{C}}^{\text{fr}}$.

We begin with some preliminaries. Suppose we are given a collection of models $\{M_i\}_{i \in I}$ of \mathcal{C} , indexed by a set *I*. In Lecture 20X, we defined the ultraproduct $(\prod_{i \in I} M_i)/\mathcal{U}$ associated to an ultrafilter \mathcal{U} on *I*: it is the functor from \mathcal{C} to Set given by the construction $C \mapsto (\prod_{i \in I} M_i(C))/\mathcal{U}$. In the special case where each M_i is equal to some fixed model *M*, we denote this ultraproduct by M^I/\mathcal{U} and refer to it as the *ultrapower* of *M* with respect to the ultrafilter \mathcal{U} . Note that the diagonal embedding $M(C) \mapsto M(C)^I$ induces a map

$$M(C) \to M(C)^I \to \varinjlim_{J \in \mathfrak{U}} M(C)^J = (M^I/\mathfrak{U})(C).$$

This map depends functorially on C, and can therefore be regarded as a morphism of models $\delta_M : M \to M^I/\mathcal{U}$. We will deduce Theorem 3 from the following:

Theorem 5. Let $f: M \to N$ be an elementary map between models of \mathbb{C} . Then there exists a set I, an ultrafilter \mathfrak{U} on I, and a map of models $g: N \to M^I/\mathfrak{U}$ for which the composite map

$$M \xrightarrow{f} N \xrightarrow{g} M^I / \mathfrak{U}$$

coincides with the diagonal embedding δ_M .

Exercise 6. Let M be a model of \mathcal{C} , I a set, and \mathcal{U} an ultrafilter on I. Show that the map of models $\delta_M : M \to M^I / \mathcal{U}$ is elementary.

Proof of Theorem 3 from Theorem 5. Suppose that $f: M \to N$ is an elementary map between models of \mathcal{C} , and that we are given a point $\eta \in \mathscr{F}(N)$ which belongs to the equalizer

$$\operatorname{Eq}(\mathscr{F}(N) \rightrightarrows \prod_{M \to N \rightrightarrows P} \mathscr{F}(P)).$$

We wish to show that η can be lifted uniquely to an element of $\mathscr{F}(M)$.

Choose $g: N \to M^I/\mathcal{U}$ as in Theorem 5, and let $\overline{\eta}$ denote the image of η in $\mathscr{F}(M^I/\mathcal{U})$. Since \mathscr{F} commutes with ultraproducts (Remark 1), we can identify $\overline{\eta}$ with an element of $\mathscr{F}(M)^I/\mathcal{U}$. Choose a representative $\{\eta_i \in \mathscr{F}(M)\}_{i \in I}$ for $\overline{\eta}$. We have a commutative diagram of models

$$M \xrightarrow{\delta_M} M^I / \mathcal{U}$$

$$\downarrow^{\delta_M} \qquad \qquad \downarrow^{(\delta_M)^I / \mathcal{U}}$$

$$M^I / \mathcal{U} \xrightarrow{\delta_{M^I / \mathcal{U}}} M^I / \mathcal{U})^I / \mathcal{U}.$$

Consequently, our hypothesis on η guarantees that the maps

$$\delta_M^I/\mathfrak{U}, \delta_{M^I/\mathfrak{U}}: M^I/\mathfrak{U} \to (M^I/\mathfrak{U})^I/\mathfrak{U}$$

carry $\overline{\eta}$ to the same element of

$$\mathscr{F}((M^I/\mathfrak{U})^I/\mathfrak{U}) \simeq (\mathscr{F}(M)^I/\mathfrak{U})^I/\mathfrak{U}.$$

Unwinding the definitions, this tells us that the set $\{i \in I : \{j \in I : \eta_i = \eta_j\} \in \mathcal{U}\}$ belongs to \mathcal{U} . In particular, it is nonempty: that is, there exists some $i \in I$ such that $\eta_i = \eta_j$ for almost all $j \in I$ (with respect to the ultrafilter \mathcal{U}). We will complete the proof by showing that η is the image of $\eta_i \in \mathscr{F}(M)$. To prove this, we use the commutativity of the diagram

to observe that the maps $(f^I/\mathfrak{U}) \circ g, \delta_N : N \to N^I/\mathfrak{U}$ agree on M, and therefore carry η to the same element of N^I/\mathfrak{U} . It follows that the set $\{j \in J : \mathscr{F}(f)(\eta_j) = \eta\}$ belongs to \mathfrak{U} , and therefore has nonempty intersection with the set $\{j \in J : \eta_j = \eta_i\}$.

Proof of Theorem 5. To avoid confusion, let us use the notation T_M to denote the image of a model $M \in Mod(\mathbb{C})$ under the inclusion $Mod(\mathbb{C})^{op} \hookrightarrow Pro(\mathbb{C})$. The elementary map $f: M \to N$ can then be identified with a map of pro-objects $T_N \to T_M$, which we will denote by T_f . Our assumption that f is elementary guarantees that T_f is an effective epimorphism in $Pro(\mathbb{C})$, and can therefore be realized as the limit of an inverse system $\{u_\alpha: C_\alpha \to D_\alpha\}$, where each u_α is an effective epimorphism in \mathbb{C} . Without loss of generality, we may assume that this inverse limit is indexed by the opposite of partially ordered set I which is *directed* (so that every finite subset of I has an upper bound in I).

For each $\alpha \in I$, set $P_{\alpha} = C_{\alpha} \times_{D_{\alpha}} T_M$ (where the fiber product is formed in $\operatorname{Pro}(\mathbb{C})$. Since M is a model, each of the maps $T_M \to D_{\alpha}$ factors through u_{α} . A choice of factorization determines a section $s_{\alpha} : T_M \to P_{\alpha}$ of the projection map $P_{\alpha} \to T_M$. To avoid confusion, let us write F_{α} for the image of P_{α} in the opposite category $\operatorname{Fun}^{\operatorname{lex}}(\mathbb{C}, \operatorname{Set}) \simeq \operatorname{Pro}(\mathbb{C})^{\operatorname{op}}$, so that each s_{α} can be viewed as a natural transformation of functors $F_{\alpha} \to M$. Note that we have $T_N \simeq \varprojlim_{\alpha} P_{\alpha}$ in $\operatorname{Pro}(\mathbb{C})$, so that $N \simeq \varinjlim_{\alpha} F_{\alpha}$ in $\operatorname{Fun}^{\operatorname{lex}}(\mathbb{C}, \operatorname{Set})$.

Let \mathcal{U}_0 be the collection of all subsets $J \subseteq I$ for which there exists some $\alpha \in I$ such that $\{\beta \in I : \beta \geq \alpha\} \subseteq J$. Our assumption that I is directed guarantees that \mathcal{U}_0 is a (nontrivial) filter on I. We can therefore choose an ultrafilter \mathcal{U} which contains \mathcal{U}_0 . For each object $C \in \mathcal{C}$ and each $\alpha \in I$, we have a canonical map $F_{\alpha}(C) \to \prod_{\beta \geq \alpha} F_{\beta}(C)$ given by the transition maps in the direct system $\{F_{\beta}(C)\}_{\beta \in I}$, which induces a map from $F_{\alpha}(C)$ to the ultraproduct $(\prod_{\beta \in I} F_{\beta}(C))/\mathcal{U}$. This construction depends functorially on α , and therefore yields a map

$$N(C) = \varinjlim_{\alpha \in I} F_{\alpha}(C) \to \varinjlim_{\alpha \in I} (\prod_{\beta \ge \alpha} F_{\beta}(C)) \to \varinjlim_{J \in \mathcal{U}} \prod_{\beta \in J} F_{\beta}(C) = (\prod_{\beta \in I} F_{\beta}(C)) / \mathcal{U}.$$

Composing with the map

$$(\prod_{\beta \in I} F_{\beta}(C))/\mathfrak{U} \xrightarrow{\{s_{\beta}\}} (\prod_{\beta \in I} M(C))/\mathfrak{U} = (M^{I}/\mathfrak{U})(C),$$

we obtain a map $N(C) \to (M^I/\mathcal{U})(C)$ which depends functorially on C, and can therefore be regarded as a map of models $N \to M^I/\mathcal{U}$. Our assumption that each s_{α} is a section of the projection map guarantees the the composition $M \to N \to M^I/\mathcal{U}$ agrees with the diagonal embedding.