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April 4, 2018

Let C be an essentially small pretopos, which we regard as fixed throughout this lecture. We have fully
faithful embeddings

C ↪→ Shv(C) ↪→ Shv(Pro(C)) ' Shv(Prowp(C)) ' Shv(StoneC) ⊆ Fun(StoneopC , Set).

Moreover, in Lectures 17X and 19X we established the following:

Proposition 1. Let F : StoneopC → Set be a functor. Then F belongs to the essential image of the embedding
Shv(C) ↪→ Fun(StoneopC , Set) if and only if it satisfies the following conditions:

(a) The functor F : StoneopC → Set preserves finite products: that is, it carries finite coproducts in StoneC
to finite products in the category of sets.

(b) For every object (X,OX) ∈ StoneC and every point x ∈ X, the canonical map

lim−→
x∈U

F (U,OX |U )→ F ({x},OX,x)

is bijective; here the colimit is taken over all clopen neighborhoods U ⊆ X of the point x.

(c) The composite functor

Mod(C) ↪→ StoneopC
F−→ Set

commutes with filtered colimits.

(d) For every elementary morphism f : M → N in Mod(C), we have an equalizer diagram

F (M)→ F (N) ⇒
∏

F (P )

where the product is taken over all commutative diagrams

M
f−→ N ⇒ P

in Mod(C).

Our goal in this lecture is to explain what additional conditions need to be satisfied for the functor F to
belong to the essential image of the embedding C ↪→ Fun(StoneopC , Set). This embedding is easy to describe:
to an object C ∈ C, it associates the functor

StoneopC → Set (X,OX) 7→ OC
X(X),

which corresponds under the equivalence StoneopC ' Prowp(C)op ⊆ Fun(C, Set) to the evaluation functor
F 7→ F (C). In the last lecture, we noted that the category Prowp(C) admits small coproducts, which are
computed as (pointwise) products in the functor category Fun(C, Set). It follows that if F : StoneopC → Set
is given by evaluation at an object C ∈ C, then it satisfies the following stronger version of condition (a):
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(a+) The functor F carries (possibly infinite) coproducts in StoneC to products in the category of sets.

We will show that, conversely, a functor F satisfying (a+) together with conditions (b), (c), and (d) of
Proposition 1 belongs to the essential image of C ↪→ Fun(StoneopC , Set). Moreover, it suffices to check (a+)
in a restricted class of examples.

Theorem 2. Let F : StoneopC → Set be a functor which satisfies the conditions of Proposition 1, so that F
is isomorphic to the image of some object F 0 ∈ Shv(C). The following conditions are equivalent:

(1) The sheaf F 0 ∈ Shv(C) is representable by an object C ∈ C.

(2) The functor F satisfies condition (a+) above.

(3) The functor F satisfies the following weaker version of (a+):

(a′) For every collection of models {Mi ∈ Mod(C)}i∈I , the canonical map

F (
∐
i∈I

({i},Mi))→
∏
i∈I

F ({i},Mi)

is a bijection.

The implication (1)⇒ (2) was noted above, and the implication (2)⇒ (3) is immediate. We will complete
the proof by showing that (3)⇒ (1). For this, we will need a variant of Deligne’s completeness theorem.

Notation 3. Recall that every model M : C → Set admits an essentially unique extension to a functor
Shv(C) → Set which preserves small colimits and finite limits (that is, to a point of the topos Shv(C)). In

what follows, we will denote this extension by M̂ : Shv(C)→ Set.

Lemma 4. Let u : G → F be a morphism in the topos Shv(C). If u is not an effective epimorphism, then

there exists a model M of C for which the map M̂(G )→ M̂(F ) is not surjective.

Proof. Since F admits a covering by representable functors, our assumption that u is not an effective
epimorphism guarantees that we can choose an object C ∈ C and a morphism hC → F for which the
projection map

hC ×F G → hC

is not an effective epimorphism. For any model M ∈ Mod(C), we have a pullback diagram of sets

M̂(hC ×F G ) //

��

M(C)

��
M̂(G ) // M̂(F ).

Consequently, if the upper horizontal map is not surjective, then the lower horizontal map is also not
surjective. We may therefore replace F by hC (and G by the fiber product hC ×F G ) and thereby reduce
to the case where F is representable by an object C ∈ C.

Choose an effective epimorphism u : P → C in Pro(C), where P is weakly projective. Under the
equivalence Prowp(C) ' StoneC, we can identify P with an object (X,OX) ∈ StoneC. Moreover, the map u
determines a global section s of OC

X(X). For each point x ∈ X, let us regard OX,x as a model of C, so that

s determines an element sx ∈ OC
X,x. Assume, for a contradiction, that each of the maps

ÔX,x(G )→ ÔX,x(hC) = OC
X,x

is surjective. Then each sx can be lifted to an element s̃x ∈ ÔX,x(G ). Choose a covering {hCi → G }i∈I

in the topos Shv(C). Then, for each point x ∈ X, we can choose an index i(x) ∈ I such that s̃x lifts to a
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point tx ∈ ÔX,x(hCi(x)
) ' O

Ci(x)

X,x . Choose an open set U(x) ⊆ X containing x such that sx can be lifted to

t ∈ O
Ci(x)

X (U(x)). Shrinking U(x) if necessary, we may assume that the image of t in OC
X(U(x)) agrees with

the restriction s|U(x).
Note that the open sets {U(x)}x∈X cover the topological space X. Since X is compact, we can choose

a finite collection of points x1, x2, . . . , xn ∈ X for which the open sets U(x1), . . . , U(xn) cover X. By

construction, each restriction s|U(xj) can be lifted to a section of O
Ci(xj)

X over the open set U(xj). It follows

that s is a global section of the subsheaf OC0

X ⊆ OC
X , where C0 = Im(

∐
C(xj) → C). Our assumption that

u is an effective epimorphism then shows that we must have C0 = C, contradicting our assumption that the
map G → hC is not an effective epimorphism.

Proof of Theorem 2. Let F : StoneopC → Set be a functor which satisfies the conditions of Proposition 1, so
that F arises from a sheaf F 0 ∈ Shv(C). Assume further that F satisfies condition (a′). We wish to prove
that F 0 belongs to the essential image of the Yoneda embedding C ↪→ Shv(C). Since C is a pretopos, the
sheaf F 0 ∈ Shv(C) is representable by an object of C if and only if it is quasi-compact and quasi-separated.

We first show that F 0 is quasi-compact. Choose a collection {ui : hCi
→ F 0}i∈I of representatives

for all maps from representable sheaves to F 0. Since F 0 is not quasi-compact, none of these maps is an
effective epimorphism. For each index i ∈ I, we can use Lemma 4 to choose a model Mi and a point
ηi ∈ F ({i},Mi) which does not belong to the image of the map Mi(Ci) → M̂i(F 0) = F ({i},Mi). Set
(X,OX) = qi∈I({i},Mi), where the coproduct is formed in the category StoneC. Using condition (a′),
we see that the system {ηi}i∈I can be lifted (uniquely) to a point η ∈ F (X,OX) under the bijection
F (X,OX)→

∏
i∈I F ({i},Mi).

For each point x ∈ X, let ηx denote the image of η in F ({x},OX,x) ' ÔX,x(F 0). Then there exists some

i(x) ∈ I such that ηx can be lifted to an element η̃x ∈ ÔX,x(hCi(x)
) ' O

Ci(x)

X,x . Choose a clopen open set U(x)

containing x and lift of η̃x to some sx ∈ O
Ci(x)

X (U(x)). Let sx denote the image of sx in F (U(x),OX |U(x)).
By construction, sx and η have the same image in F ({x},OX,x). It follows from (b) that we can assume,
after shrinking U(x) if necessary, that sx = η|U(x).

SinceX is compact, we can choose finitely many points x1, . . . , xn for which the open sets U(x1), . . . , U(xn)
cover X. Then the map

(ui(x1), . . . , ui(xn)) : (hCi(x1)
q · · · q hCi(xn)

→ F 0

can be identified with uj : hCj
→ F 0 for some j ∈ I. Let y denote the image of j in X = βI (corresponding to

the principal ultrafilter associated to j). Then we have y ∈ U(x) for some x ∈ {x1, . . . , xn}. By construction,

it follows that η|U(x) can be lifted to the point sx ∈ O
Ci(x)

X (U(x)), so that the stalk ηy belongs to the image
of the map

O
Ci(x)

X,y ' ÔX,y(hCi(x)
)→ ÔX,y(F 0)

determined by the map ui(x) : hCi(x)
→ F 0. However, the map ui(x) factors through uj : hCj → F 0, so that

ηy also belongs to the image of the map

O
Cj

X,y 'Mj(Cj)→ ÔX,y(F 0),

contradicting our choice of Mj . This completes the proof that F 0 is quasi-compact.
We now complete the proof by showing that F 0 is quasi-separated. Choose a pair of quasi-compact

objects G 0,H 0 ∈ Shv(C)/F0
; we wish to show that the fiber product G 0×F0

H 0 is quasi-compact. Covering
G and H by representable sheaves, we may assume that G 0 and H 0 are representable by objects of C. Let
G and H denote the images of G 0 and H 0 in the category Fun(StoneopC , Set). Then G and H satisfy
condition (a′) (even condition (a+)), so that G ×F H also satisfies condition (a′). The preceding argument
then shows that G 0×F0

H 0 is quasi-compact, as desired.
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