Lecture 20: X-Locales

March 12, 2018

Let f:Y — X be a geometric morphism of topoi. In the previous lecture, we proved that if f is localic,
then it can be recovered from any of the following three interchangeable pieces of data:

(a) The object Qy /x € X, together with its partial order Q%/x C Qy/x X Qy/x.

(b) The functor X°? — {Posets} given by X — Sub(f*X).

(¢) The category Loc(f) obtained by applying the Grothendieck construction to the functor X — Sub(f*X).
In this lecture, it will be convenient to adopt perspective (b). Our goal is to address the following;:

Question 1. Let £ : X°” — {Posets} be a functor. Under what conditions does there exist a geometric
morphism f:Y — X and a natural isomorphism £ ~ Sub(f*(e))?

We begin by recording some necessary conditions.

Proposition 2. Let f : Y — X be a geometric morphism of topoi and define £ : X°P — {Posets} by the
formula £(X) = Sub(f*(X)). Then:

(1) The functor £ : X°P — {Posets} is a sheaf (with respect to the canonical topology on X).
(2) For each X € X, the poset L(X) is a locale.

(3) For each morphism g: X' — X in X, let g* = L(g) denote the associated map of posets from L(X) to
L(X"). Then g* determines an open morphism of locales L(X') — L(X). In particular, it has a left
adjoint g : L(X') = L(X).

(4) For every pullback diagram
v v
lh/ lh
x —2sx,
we have an equality hj o g = g* o hy of maps from L(U) to L(X').

Proof. Assertions (1), (2), and (3) were noted in the previous lecture. To prove (4), let V € L(U) =
Sub(f*U). Note that we have a pullback diagram

f*U/ f*U

L

f*X/ - s f*X.



Then MV is the image of the composite map V C f*U — f*X, and hjg’*(V) is the image of the map
\%4 XU f*U/ ~V XX f*X/ — f*XI.

The equality (g* o hi(V') = (h{ o ¢"*)(V) now follows from the fact that the formation of images in the topos
Y is compatible with pullback. O

Definition 3. Let X be a topos. An X-locale is a functor £ : X°? — {Posets} which satisfies conditions (1)
through (4) of Proposition 2.

Remark 4. We will refer to condition (4) of Proposition 2 as the Beck-Chevalley condition for the functor
L. Note that for any commutative diagram o :

U'Ll)U

.

X 2 X,

in the topos X, we automatically have an inequality hj o ¢’* < ¢g* o h;. The Beck-Chevalley condition asserts
that the reverse inequality holds when o is a pullback square.

Remark 5. Conditions (1), (2), and (3) of Proposition 2 can be summarized by saying that the functor
L : X°P — {Posets} can be regarded as a sheaf on X taking values in the opposite of the category of locales
and open morphisms.

We can restate Proposition 2 as follows: for every geometric morphism f : Y — X, the construction
X + Sub(f*X) determines an X-locale. We now prove the converse:

Proposition 6. Let X be a topos and let £ : X°P — {Posets} be an X-locale. Then there exists a localic
geometric morphism f:Y — X and a natural isomorphism L(X) ~ Sub(f*X).

Remark 7. In Lecture 19, we saw that a localic geometric morphism f : Y — X can be recovered from the
associated X-locale. Combining this with Proposition 6, we obtain a dictionary

{Topoi localic over X} ~ {X-locales}.

We will later refine this picture to an equivalence of categories.

Proof of Proposition 6. Lecture 19 tells us what we need to do. Let X denote the category obtained by
applying the Grothendieck construction to the functor £. More concretely, it can be described as follows:

e The objects of X are pairs (X,U), where X € X and U € L(X).

e A morphism from (X’,U’) to (X,U) is a morphism ¢ : X’ — X in the topos X satisfying U’ < ¢*(U)
(or equivalently gi(U’) < U).

Let us say that a collection of maps {g; : (X;,U;) — (X,U)}ies in X is a covering if U = \/ gaU; in £(X).

We claim that this determines a Grothendieck topology on X. We check that the collection of coverings is
stable under pullback (the remaining axioms for a Grothendieck topology are easy and left as an exercise).
Suppose we are given a covering {g; : (X;,U;) — (X, U) and an arbitrary morphism h : (Y, V) — (X, U).

For each i € I, we can form the fiber product (X;, U;) x(x,vy (Y, V) in the category X; it is given by
(Xi xx Y, iU, Al*V), where m; : Uy xx Y = U; and 7, : U; xx Y — Y are the two projection maps. We



claim that the family of maps {7} : (X; xx Y, 7/U; A 7*V) — (Y,V)}icr is also a covering. For this, we
compute

\/ (MU ATV) = \/(Wg! (miUi) AV)
i€l ier

= (\/ 7h(mU)) AV

el

= (/P galU) AV

icl
= h*(\/gi!Ui)/\V
iel
= KU)AV
= W

Here the first equality follows from the projection formula for the open morphism of locales £L(U; xx V) —
L(Y), the second equality from the distributive law in the locale £(Y"), the third from the Beck-Chevalley
property for £, the fourth from the fact that the map h* preserves joins, the fifth from the assumption that
{(X;,U;) = (X,U)}ier is a covering, and the sixth from the inequality V' C h*U.

We now encounter a bit of a technical annoyance: the category X is not small, so it is not a priori clear
that the category Shv(X) is a topos. To address this, let us choose a small full Subcategory Xo € X which
generates X and is closed under finite limits, and set f)Co =X Xx Xo. Then f)Co inherits a Grothendieck
topology (with the notion of covering defined as above), so that Shv(DCo) is a topos. Moreover, the inclusion
functor Shv(9~C0) — Fun(%gp,Set) admits a left adjoint (given by sheafification), which we will denote by

L. (One can show that the restriction map Shv(X) — Shv(Xy) is an equivalence of categories, but we will
not need this). Let h : Xo — Shv(xo) denote the sheafified Yoneda embedding h(X,U) = Lh(x ) (beware
that the topology on DCO is not subcanonical, so the sheafification is necessary). Since L and the Yoneda
embedding preserve finite limits, the functor E also preserves finite limits.

For each object X € X, let 1x denote the largest element of £(X). Then the construction X +— (X, 1x)
determines a functor X — X which preserves finite limits. We claim that it also preserves coverings: that
is, for every covering {g; : X; — X} in X, the family {(X;,1x,) — (X,1x)} is a covering in X. To prove
this, we must show that if U € £(X) has the property that 1x, < g*U for each ¢ € I, then U = 1x.
This follows from our assumption that £ is a sheaf (since 9;U = 1x, for each i). It follows that there is
an essentially unique geometric morphism of topoi f’ : Shv(f)Co) — Shv(Xy) satisfying f*hx ~ h(X U) for
each X € Xy. Composing with the equivalence X ~ Shv(Xy) given by the Yoneda embedding, we obtain a
geometric morphism f : Shv(xo) — X with the property that f*X ~ h(X 1x) for each X € Xy. We will
complete the proof by showing that this functor has the desired properties.

We first note that the topos Shv(f)Co) is generated by objects of the form h(X,U), where X € X, and
U € L(X). For every such object, we have a monomorphism (X,U) — (X, 1x) in the category Xo, hence
also a homomorphism (X, U) — h(X,1x) ~ f*X in the category Shv(Xo). It follows that the geometric
morphism f is localic.

To complete the proof, it will suffice to construct a natural isomorphism £ ~ Sub(f*(e)) of functors
X — {Posets}. For each X € Xy, we have a map

px : £(X) = Sub(f*X) ~ Sub(h(X,1x)),

given by px (U) = iNL(X, U). Note that px depends functorially on X. We will show that each px is bijective,
so that {px }xex, is a natural isomorphism of functors £ |yer = Sub(f*(e))[xcr. Since both sides are sheaves
with respect to the canonical topology on X, it follows that this natural isomorphism extends uniquely to
an isomorphism of functors £ =~ Sub(f*(e)).



Let us henceforth regard X € Xy as fixed. We will construct an inverse to the map px. Let % be a
subsheaf of f*X = Lh(x ). For each U € L£(X), let 1y : (X,U) — (X,1x) denote the morphism in Xy
given by the identity map from X to itself, which we can regard as an element of h(x 1,)(X,U). Let iy
denote the image of 1y as a section of the associated sheaf Lh(x 1,) = f*X. Consider the set

U={U € £(X) : Ty € F(X,U) C (FX)(X,U)}.

Note that U is closed under joins (this follows by applying the sheaf condition to %, since the family
{(X,U;) = (X,VU;)} is a covering for any family of elements {U; € L(X)}ic;). It follows that U contains
a largest element U. The construction % +— U determines a map of posets ¢ : Sub(f*X) — L£(X).

We first claim that the composition £(X) 25 Sub(f*X) LN L(X) is the identity. Fix an object U €
L(X). Then ¢y belongs to the sub-presheaf hx ) € h(x,1) (when evaluated at (X, U)), so that 7y belongs to
the subsheaf h(X,U) C h(X,1x) (when evaluated at (X, U)). We wish to show that U is the largest element
of £L(X) with this property. Let V be any element of £(X), and assume that 7y belongs to the subsheaf
h(X,U) C h(X,1x) (when evaluated at (X,V)). Then we can choose a covering {g; : (X;, Vi) — (X, V)} in
Xo with the property that each of the composite maps (X;, V;) — (X, V) C (X, 1x) belongs to h(x r)(X;, V).
It follows that we have g;V; < U for each i, so that V = \/ gyV; < U. This completes the proof that 1 o px
is the identity.

We now prove that the composition px o1 : Sub(f*X) — Sub(f*X) is the identity. Let .# be a subsheaf
of f*X and form a pullback diagram of presheaves

Fo F

|

hixix) —= f"X.

Set U = +(#). By construction, U is the largest element of U(X) for which .#, contains h(x ¢y (as
subfunctors of h(x 1,). We will complete the proof by showing that .%o = h(x ); it then follows by the
left exactness of sheafification that .# = L .%¢ = Lh(x ) = px(U). Fix an object (Y, V) € Xy and a point
n of Fo(Y,V), which we can identify with a map g : ¥ — X. The map (Y,V) — (X, qV) is a covering
in Xy. Since membership in the subsheaf .# C f*X can be tested locally, we conclude that 741 belongs to
F(X,gV), so that gV C U. It follows that 7 belongs to the sub-pre-sheaf hx 1y C F, as desired. O



