
Lecture 20: X-Locales

March 12, 2018

Let f : Y→ X be a geometric morphism of topoi. In the previous lecture, we proved that if f is localic,
then it can be recovered from any of the following three interchangeable pieces of data:

(a) The object ΩY /X ∈ X, together with its partial order Ω⊆
Y /X ⊆ ΩY /X × ΩY /X.

(b) The functor Xop → {Posets} given by X 7→ Sub(f∗X).

(c) The category Loc(f) obtained by applying the Grothendieck construction to the functorX 7→ Sub(f∗X).

In this lecture, it will be convenient to adopt perspective (b). Our goal is to address the following:

Question 1. Let L : Xop → {Posets} be a functor. Under what conditions does there exist a geometric
morphism f : Y→ X and a natural isomorphism L ' Sub(f∗(•))?

We begin by recording some necessary conditions.

Proposition 2. Let f : Y → X be a geometric morphism of topoi and define L : Xop → {Posets} by the
formula L(X) = Sub(f∗(X)). Then:

(1) The functor L : Xop → {Posets} is a sheaf (with respect to the canonical topology on X).

(2) For each X ∈ X, the poset L(X) is a locale.

(3) For each morphism g : X ′ → X in X, let g∗ = L(g) denote the associated map of posets from L(X) to
L(X ′). Then g∗ determines an open morphism of locales L(X ′) → L(X). In particular, it has a left
adjoint g! : L(X ′)→ L(X).

(4) For every pullback diagram

U ′
g′ //

h′

��

U

h

��
X ′

g // X,

we have an equality h′! ◦ g′∗ = g∗ ◦ h! of maps from L(U) to L(X ′).

Proof. Assertions (1), (2), and (3) were noted in the previous lecture. To prove (4), let V ∈ L(U) =
Sub(f∗U). Note that we have a pullback diagram

f∗U ′

��

// f∗U

��
f∗X ′ // f∗X.
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Then h!V is the image of the composite map V ⊆ f∗U → f∗X, and h′!g
′∗(V ) is the image of the map

V ×f∗U f∗U ′ ' V ×f∗X f∗X ′ → f∗X ′.

The equality (g∗ ◦ h!(V ) = (h′! ◦ g′∗)(V ) now follows from the fact that the formation of images in the topos
Y is compatible with pullback.

Definition 3. Let X be a topos. An X-locale is a functor L : Xop → {Posets} which satisfies conditions (1)
through (4) of Proposition 2.

Remark 4. We will refer to condition (4) of Proposition 2 as the Beck-Chevalley condition for the functor
L. Note that for any commutative diagram σ :

U ′
g′ //

h′

��

U

h

��
X ′

g // X,

in the topos X, we automatically have an inequality h′! ◦ g′∗ ≤ g∗ ◦ h!. The Beck-Chevalley condition asserts
that the reverse inequality holds when σ is a pullback square.

Remark 5. Conditions (1), (2), and (3) of Proposition 2 can be summarized by saying that the functor
L : Xop → {Posets} can be regarded as a sheaf on X taking values in the opposite of the category of locales
and open morphisms.

We can restate Proposition 2 as follows: for every geometric morphism f : Y → X, the construction
X 7→ Sub(f∗X) determines an X-locale. We now prove the converse:

Proposition 6. Let X be a topos and let L : Xop → {Posets} be an X-locale. Then there exists a localic
geometric morphism f : Y→ X and a natural isomorphism L(X) ' Sub(f∗X).

Remark 7. In Lecture 19, we saw that a localic geometric morphism f : Y→ X can be recovered from the
associated X-locale. Combining this with Proposition 6, we obtain a dictionary

{Topoi localic over X} ' {X-locales}.

We will later refine this picture to an equivalence of categories.

Proof of Proposition 6. Lecture 19 tells us what we need to do. Let X̃ denote the category obtained by
applying the Grothendieck construction to the functor L. More concretely, it can be described as follows:

• The objects of X̃ are pairs (X,U), where X ∈ X and U ∈ L(X).

• A morphism from (X ′, U ′) to (X,U) is a morphism g : X ′ → X in the topos X satisfying U ′ ≤ g∗(U)
(or equivalently g!(U

′) ≤ U).

Let us say that a collection of maps {gi : (Xi, Ui) → (X,U)}i∈I in X̃ is a covering if U =
∨
gi!Ui in L(X).

We claim that this determines a Grothendieck topology on X̃. We check that the collection of coverings is
stable under pullback (the remaining axioms for a Grothendieck topology are easy and left as an exercise).

Suppose we are given a covering {gi : (Xi, Ui)→ (X,U) and an arbitrary morphism h : (Y, V )→ (X,U).

For each i ∈ I, we can form the fiber product (Xi, Ui) ×(X,U) (Y, V ) in the category X̃; it is given by
(Xi ×X Y, π∗i Ui ∧ π′∗i V ), where πi : Ui ×X Y → Ui and π′i : Ui ×X Y → Y are the two projection maps. We
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claim that the family of maps {π′i : (Xi ×X Y, π∗i Ui ∧ π′∗i V ) → (Y, V )}i∈I is also a covering. For this, we
compute ∨

i∈I
π′i!(π

∗
i Ui ∧ π′∗i V ) =

∨
i∈I

(π′i!(π
∗
i Ui) ∧ V )

= (
∨
i∈I

π′i!(π
∗
i Ui)) ∧ V

= (
∨
i∈I

h∗gi!Ui) ∧ V

= h∗(
∨
i∈I

gi!Ui) ∧ V

= h∗(U) ∧ V
= V.

Here the first equality follows from the projection formula for the open morphism of locales L(Ui ×X Y )→
L(Y ), the second equality from the distributive law in the locale L(Y ), the third from the Beck-Chevalley
property for L, the fourth from the fact that the map h∗ preserves joins, the fifth from the assumption that
{(Xi, Ui)→ (X,U)}i∈I is a covering, and the sixth from the inequality V ⊆ h∗U .

We now encounter a bit of a technical annoyance: the category X̃ is not small, so it is not a priori clear
that the category Shv(X̃) is a topos. To address this, let us choose a small full subcategory X0 ⊆ X which

generates X and is closed under finite limits, and set X̃0 = X̃ ×X X0. Then X̃0 inherits a Grothendieck
topology (with the notion of covering defined as above), so that Shv(X̃0) is a topos. Moreover, the inclusion

functor Shv(X̃0) ↪→ Fun(X̃
op

0 , Set) admits a left adjoint (given by sheafification), which we will denote by

L. (One can show that the restriction map Shv(X̃) → Shv(X̃0) is an equivalence of categories, but we will

not need this). Let h̃ : X̃0 → Shv(X̃0) denote the sheafified Yoneda embedding h̃(X,U) = Lh(X,U) (beware

that the topology on X̃0 is not subcanonical, so the sheafification is necessary). Since L and the Yoneda

embedding preserve finite limits, the functor h̃ also preserves finite limits.
For each object X ∈ X, let 1X denote the largest element of L(X). Then the construction X 7→ (X,1X)

determines a functor X → X̃ which preserves finite limits. We claim that it also preserves coverings: that
is, for every covering {gi : Xi → X} in X, the family {(Xi,1Xi

) → (X,1X)} is a covering in X. To prove
this, we must show that if U ∈ L(X) has the property that 1Xi

≤ g∗i U for each i ∈ I, then U = 1X .
This follows from our assumption that L is a sheaf (since g∗i U = 1Xi

for each i). It follows that there is

an essentially unique geometric morphism of topoi f ′ : Shv(X̃0) → Shv(X0) satisfying f ′∗hX ' h̃(X,U) for
each X ∈ X0. Composing with the equivalence X ' Shv(X0) given by the Yoneda embedding, we obtain a

geometric morphism f : Shv(X̃0) → X with the property that f∗X ' h̃(X,1X) for each X ∈ X0. We will
complete the proof by showing that this functor has the desired properties.

We first note that the topos Shv(X̃0) is generated by objects of the form h̃(X,U), where X ∈ X0 and

U ∈ L(X). For every such object, we have a monomorphism (X,U) → (X,1X) in the category X̃0, hence

also a homomorphism h̃(X,U) → h̃(X,1X) ' f∗X in the category Shv(X̃0). It follows that the geometric
morphism f is localic.

To complete the proof, it will suffice to construct a natural isomorphism L ' Sub(f∗(•)) of functors
Xop → {Posets}. For each X ∈ X0, we have a map

ρX : L(X)→ Sub(f∗X) ' Sub(h̃(X,1X)),

given by ρX(U) = h̃(X,U). Note that ρX depends functorially on X. We will show that each ρX is bijective,
so that {ρX}X∈X0 is a natural isomorphism of functors L |Xop

0
' Sub(f∗(•))|Xop

0
. Since both sides are sheaves

with respect to the canonical topology on X, it follows that this natural isomorphism extends uniquely to
an isomorphism of functors L ' Sub(f∗(•)).
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Let us henceforth regard X ∈ X0 as fixed. We will construct an inverse to the map ρX . Let F be a
subsheaf of f∗X = Lh(X,1X). For each U ∈ L(X), let ιU : (X,U) → (X,1X) denote the morphism in X̃0

given by the identity map from X to itself, which we can regard as an element of h(X,1X)(X,U). Let ι̃U
denote the image of ιU as a section of the associated sheaf Lh(X,1X) = f∗X. Consider the set

U = {U ∈ L(X) : ι̃U ∈ F (X,U) ⊆ (f∗X)(X,U)}.

Note that U is closed under joins (this follows by applying the sheaf condition to F , since the family
{(X,Ui) → (X,

∨
Ui)} is a covering for any family of elements {Ui ∈ L(X)}i∈i). It follows that U contains

a largest element U . The construction F 7→ U determines a map of posets ψ : Sub(f∗X)→ L(X).

We first claim that the composition L(X)
ρX−−→ Sub(f∗X)

ψ−→ L(X) is the identity. Fix an object U ∈
L(X). Then ιU belongs to the sub-presheaf h(X,U) ⊆ h(X,1) (when evaluated at (X,U)), so that ι̃U belongs to

the subsheaf h̃(X,U) ⊆ h̃(X,1X) (when evaluated at (X,U)). We wish to show that U is the largest element
of L(X) with this property. Let V be any element of L(X), and assume that ι̃V belongs to the subsheaf

h̃(X,U) ⊆ h̃(X,1X) (when evaluated at (X,V )). Then we can choose a covering {gi : (Xi, Vi)→ (X,V )} in
X0 with the property that each of the composite maps (Xi, Vi)→ (X,V ) ⊆ (X,1X) belongs to h(X,U)(Xi, Vi).
It follows that we have gi!Vi ≤ U for each i, so that V =

∨
gi!Vi ≤ U . This completes the proof that ψ ◦ ρX

is the identity.
We now prove that the composition ρX ◦ψ : Sub(f∗X)→ Sub(f∗X) is the identity. Let F be a subsheaf

of f∗X and form a pullback diagram of presheaves

F 0
//

��

F

��
h(X,1X)

// f∗X.

Set U = ψ(F ). By construction, U is the largest element of U(X) for which F 0 contains h(X,U) (as
subfunctors of h(X,1X). We will complete the proof by showing that F 0 = h(X,U); it then follows by the
left exactness of sheafification that F = LF 0 = Lh(X,U) = ρX(U). Fix an object (Y, V ) ∈ X0 and a point
η of F 0(Y, V ), which we can identify with a map g : Y → X. The map (Y, V ) → (X, g!V ) is a covering
in X0. Since membership in the subsheaf F ⊆ f∗X can be tested locally, we conclude that ι̃g!V belongs to
F (X, g!V ), so that g!V ⊆ U . It follows that η belongs to the sub-pre-sheaf h(X,U) ⊆ F 0, as desired.
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