
Lecture 19X-Sheaves on StoneC

March 30, 2018

Let C be an essentially small pretopos, which we regard as fixed throughout this lecture. In Lecture 15X,
we constructed a fully faithful embedding

Shv(C) ↪→ Shv(Pro(C)) ' Shv(Prowp(C)) ' Shv(StoneC) ⊆ Fun(Stoneop
C , Set).

The essential image of this embedding consists of those functors F : Stoneop
C → Set which commute with

filtered colimits and are sheaves with respect to the Grothendieck topology of Lecture 18X. Any such functor
must satisfy the following condition:

(a) The functor F : Stoneop
C → Set preserves finite products: that is, it carries finite coproducts in StoneC

to finite products in the category of sets.

In Lecture 17X, we proved that if F is a functor satisfying (a), then it commutes with filtered colimits
if and only if it satisfies the following additional conditions:

(b) For every object (X,OX) ∈ StoneC and every point x ∈ X, the canonical map

lim−→
x∈U

F (U,OX |U )→ F ({x},OX,x)

is bijective; here the colimit is taken over all clopen neighborhoods U ⊆ X of the point x.

(c) The composite functor

Mod(C) ↪→ Stoneop
C

F−→ Set

commutes with filtered colimits.

Our goal in this section is to characterize those functors F : Stoneop
C → Set which are sheaves. It is easy

to see that if F is a sheaf, then it must satisfy condition (a) above. We will prove the following partial
converse:

Theorem 1. Let F : Stoneop
C → Set be a functor satisfying conditions (a) and (b). Then F is a sheaf if

and only if it satisfies the following further condition:

(d) For every elementary morphism f : M → N in Mod(C), we have an equalizer diagram

F (M)→ F (N) ⇒
∏

F (P )

where the product is taken over all commutative diagrams

M
f−→ N ⇒ P

in Mod(C).
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Here we identify Mod(C) with the full subcategory of Stoneop
C spanned by those pairs (X,OX), where X is a

singleton.

Warning 2. In the formulation of condition (d), the product
∏

F (P ) is an ill-defined object, because it is
indexed by a proper class. However, the equalizer of the diagram F (N) ⇒

∏
F (P ) is still well-defined as

a subset of F (N).

Remark 3. Condition (d) is equivalent to the requirement that the restriction F |Mod(C) is a sheaf on the
category Mod(C)op, where we consider a collection of morphisms {M → Ni}i∈I in Mod(C) to be a covering
in Mod(C)op if at least one of the maps M → Ni is elementary (it follows from the amalgamation property
of the previous lecture that this notion of covering defines a Grothendieck topology on Mod(C)op).

Corollary 4. The topos Shv(C) can be identified with the full subcategory of Fun(Stoneop
C , Set) spanned by

those functors F which satisfy conditions (a), (b), (c) and (d) above.

Before giving the proof of Theorem 1, it will be convenient to revisit a construction from Lecture 17X,
which gives a convenient reformulation of conditions (a) and (b).

Notation 5. Let (X,OX) be an object of StoneC, and let F : Stoneop
C → Set be a functor. Let U0(X)

denote the collection of all clopen subsets of X. We define a functor

F (OX) : U0(X)op → Set

by the formula
F (OX)(U) = F (U,OX |U ).

Note that the functor F satisfies condition (a) above if and only if, for every object (X,OX) ∈ StoneC,
the functor F (OX) : U0(X)op → Set carries disjoint unions in U0(X) to products in Set. In this case,
F (OX) extends uniquely to a sheaf of sets on X, which we will also denote by F (OX).

By construction, the stalk of F (OX) at a point x ∈ X is given by the direct limit lim−→x∈U F (U,OX |U ).

We therefore have a canonical map F (OX)x → F (OX,x) (here we abuse notation by identifying the model
OX,x with the object ({x},OX,x) ∈ StoneC). Condition (b) can then be restated as follows:

(b′) For each (X,OX) ∈ StoneC and each point x ∈ X, the map F (OX)x → F (OX,x) is a bijection.

Remark 6. Let (Y,OY ) be an object of StoneC and suppose we are given a map of Stone spaces f : X → Y ,
so that f∗ OY is an X-model of C. If F : Stoneop

C → Set is a functor satisfying condition (a), then Notation
5 determines set-valued sheaves

F (OY ) ∈ Shv(Y ) F (f∗ OY ) ∈ Shv(X)

together with a comparison map f∗F (OY ) → F (f∗ OY ) in Shv(X). If F satisfies condition (b), then this
comparison map is an isomorphism of sheaves on X (this can be checked on stalks, where it follows from
(b′)).

Remark 7. Let F : Stoneop
C → Set be a functor satisfying (a) and (b). Then, for each (X,OX) ∈ StoneC,

the canonical map

F (X,OX)→
∏
x∈X

F ({x},OX,x)

is injective. This follows from the fact that a section s of the sheaf F (OX) ∈ Shv(X) is determined by its
stalks {sx}x∈X .

We can now prove the “easy” direction of Theorem 1. Let

F : Stoneop
C → Set
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be a sheaf (so that is satisfies condition (a)), and suppose that F also satisfies condition (b). We wish to
show that it satisfies condition (d). Suppose we are given an elementary morphism M → N in Mod(C).
Then the induced map

(∗, N)→ (∗,M)

is a covering in StoneC (see Lecture 18X). It follows that the canonical map F (M) → F (N) is injective,
and that its image consists of those elements s ∈ F (N) which satisfy the following condition:

(∗) For every object (X,OX) ∈ StoneC equipped with a pair of maps (X,OX) ⇒ (∗, N) which are coequal-
ized by (∗, N)→ (∗,M), the element s belongs to the equalizer Eq(F (N) ⇒ F (X,OX)).

To verify (d), we must show that it suffices to check the criterion of (∗) in the case where X is a single point.
This follows from the injectivity of the map F (X,OX)→

∏
x∈X F ({x},OX,x) (Remark 7).

We now tackle the hard direction. Assume that F : Stoneop
C → Set satisfies conditions (a), (b), and (d);

we wish to show that F is a sheaf. Choose a covering {(Xi,OXi
) → (X,OX)}i∈I in the category StoneC.

For every pair i, j ∈ I, we can identify (Xi,OXi
), (Xj ,OXj

), and (X,OX) with weakly projective pro-objects
Γ(Xi;OXi

), Γ(Xj ;OXj
), and Γ(X;OX). We can then form the fiber product

Γ(Xi;OXi)×Γ(X;OX) Γ(Xj ;OXj )

in Pro(C). This fiber product might not be weakly projective. However, it we can choose a covering by
a weakly projective pro-object, which we can then write in the form Γ(Xij ,OXij

) for some (Xij ,OXij
) ∈

StoneC). In order to show that F is a sheaf, we must verify that the diagram

F (X,OX)→
∏
i

F (Xi,OXi) ⇒
∏
i,j

F (Xij ,OXij )

is an equalizer diagram in the category of sets. Since every covering admits a finite subcover, it suffices to
check this in the case where the set I is finite. In this case, we can form the coproducts

(Y,OY ) =
∐
i∈I

(Xi,OXi
) (Z,OZ) =

∐
i,j∈I

(Xij ,OXij
).

Using condition (a), we are reduced to showing that the diagram

F (X,OX)→ F (Y,OY ) ⇒ F (Z,OZ)

is an equalizer diagram of sets.
Let G denote the direct image of F (OY ) ∈ Shv(Y ) along the projection map Y → X, and let H denote

the direct image of F (OZ) along the projection Z → X. We then have a commutative diagram

F (OX)→ G ⇒ H

in Shv(X), and we wish to show that it becomes an equalizer diagram in Set after taking global sections.
To prove this, it will suffice to show that the above diagram is an equalizer in Shv(X). This can be checked
stalkwise: that is, we are reduced to showing that the map

F (OX)x → G x ⇒ H x

is an equalizer diagram of sets, for each point x ∈ X. Let Yx ⊆ Y and Zx ⊆ Z denote the inverse images of
x. Using (b) (in the form of Remark 7), we are reduced to showing that the diagram

F ({x},OX,x)
ψ−→ F (Yx,OY |Yx) ⇒ F (Zx,OZ |Zx)

is an equalizer diagram of sets.
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Since the map (Y,OY )→ (X,OX) is a covering, Lecture 18X shows that we an choose a point y ∈ Yx for
which the map of stalks OX,x → OY,y is elementary. Using condition (d), we deduce that the composite map

F ({x},OX,x)
ψ−→ F (Yx,OY |Yx

)→ F ({y},OY,y)

is injective, so that ψ is injective. We will complete the proof by showing that every element s of the equalizer

Eq(F (Yx,OY |Yx) ⇒ F (Zx,OZ |Zx))

belongs the image of ψ. Let sy ∈ F ({y},OY,y) denote the stalk of s at the point y. We first claim that sy
belongs to the image of the composite map

F ({x},OX,x)
ψ−→ F (Yx,OY |Yx

)→ F ({y},OY,y).

By virtue of (d), it will suffice to prove the following:

(∗′) Given a model P ∈ Mod(C) and a commutative diagram of models

OX,x → OY,y ⇒ P,

the stalk sy belongs to the equalizer Eq(F (OY,y) ⇒ F (P )).

Let us identify P with an object of Pro(C), and form a pullback diagram

P̃ //

��

Γ(Z;OZ)

��
P // Γ(Y ;OY )×Γ(X;OX) Γ(Y ;OY ).

in Pro(C). Here the right vertical map is an effective epimorphism, so the left vertical map is an effective

epimorphism as well. The object P̃ might not be weakly projective. However, we can choose an effective
epimorphism Q → P̃ , where Q is weakly projective. We can then write Q = Γ(W,OW ), for some object
(W,OW ) in StoneC. By construction, the map (W,OW ) → (∗, P ) is a covering in StoneC. Using Lecture
18X, we see that there exists a point w ∈ W for which the map of models P → OW,w is elementary. Using
condition (d), we see that the map F (P )→ F (OW,w) is injective. Consequently, to verify (∗′), we are free
to replace P by OW,w. Let z ∈ Z denote the image of w under the map (W,OW ) → (Z,OZ) in StoneC, so
that the diagram of (∗′) refines to a diagram

OX,x → OY,y ⇒ OZ,z → P.

We are therefore reduced to showing that sy belongs to the equalizer Eq(F (OY,y) ⇒ F (OZ,z)), which follows
from our assumption that s ∈ Eq(F (Yx,OY |Yx

) ⇒ F (Zx,OZ |Zx
)).

The above argument shows that we can write sy as the image of an element s ∈ F ({x},OX,x). We will
complete the proof by showing that ψ(s) = s. For this, it will suffice to show that ψ(s) and s have the same
image in the stalk F ({y′},OY,y′) for each point y′ in the fiber Yx. Using the amalgamation property of the
previous lecture, we see that there exists a commutative diagram of models σ :

OX,x //

��

OY,y

��
OY,y′ // N
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where the bottom horizontal map is elementary. As above, we can form a pullback diagram

Ñ //

��

Γ(Z;OZ)

��
N // Γ(Y ;OY )×Γ(X;OX) Γ(Y ;OY )

in Pro(C) and choose an effective epimorphism Γ(V,OV ) → Ñ for some (V,OV ) ∈ StoneC. The map
(V,OV ) → (∗, N) is a covering, so there exists some point v ∈ V for which the map of models N → OV,v
is elementary. Our assumption that s belongs to the equalizer Eq(F (Yx,OY |Yx

) ⇒ F (Zx,OZ |Zx
)) then

implies that the stalks sy = ψ(s)y and sy′ have the same image in F ({v},OV,v). It follows that ψ(s)y′ and sy′

have the same image in F ({v},OV,v). Since the composite map OY,y′ → N → OV,v is elementary, assumption
(d) guarantees the injectivity of F ({y},OY,y′)→ F ({v},OV,v), so that we must have ψ(s)y′ = sy′ , as desired.
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