Lecture 19: Reconstruction of Localic Morphisms

March 9, 2018

Let $f : \mathfrak{X} \to \mathfrak{Y}$ be a geometric morphism of topoi. In the previous lecture, we saw that there is an object $\Omega_{\mathfrak{X}/\mathfrak{Y}}$ of \mathfrak{Y} with the following universal property: for each object $Y \in \mathfrak{Y}$, we have a canonical bijection

$$\operatorname{Hom}_{\mathfrak{Y}}(Y, \Omega_{\mathfrak{X}/\mathfrak{Y}}) \simeq \operatorname{Sub}(f^*Y).$$

Our goal in this lecture is to explain that, if the morphism f is localic, then we can recover \mathfrak{X} from the topos \mathfrak{Y} and the object $\Omega_{\mathfrak{X}/\mathfrak{Y}}$. For this, we need to endow $\Omega_{\mathfrak{X}/\mathfrak{Y}}$ with a little bit of additional structure.

Exercise 1. Let $f: \mathfrak{X} \to \mathfrak{Y}$ be a geometric morphism of topoi. Show that the functor

$$(Y \in \mathcal{Y}) \mapsto \{U, V \in \mathrm{Sub}(f^*Y) : U \subseteq V\}$$

is representable by an object $\Omega_{\mathfrak{X}/\mathfrak{Y}}^{\subseteq}$ of \mathfrak{Y} . Note that $\Omega_{\mathfrak{X}/\mathfrak{Y}}^{\subseteq}$ can then be viewed as a subobject of $\Omega_{\mathfrak{X}/\mathfrak{Y}} \times \Omega_{\mathfrak{X}/\mathfrak{Y}}$.

We now consider several (essentially equivalent) ways of looking at the object $\Omega_{\mathfrak{X}/\mathfrak{Y}}$:

(a) We can think of $\Omega_{\mathcal{X}/\mathcal{Y}}$ as a partially ordered object of \mathcal{Y} (with partial order given by $\Omega_{\mathcal{X}/\mathcal{Y}}^{\subseteq} \subseteq \Omega_{\mathcal{X}/\mathcal{Y}} \times \Omega_{\mathcal{X}/\mathcal{Y}}$). Concretely, this means that the intersection

$$\Omega^{\subseteq}_{\mathfrak{X}/\mathfrak{Y}} \cap (\Omega^{\subseteq}_{\mathfrak{X}/\mathfrak{Y}})^{\mathrm{op}}$$

coincides with the image of the diagonal map $\Omega_{\mathfrak{X}/\mathfrak{Y}} \to \Omega_{\mathfrak{X}/\mathfrak{Y}} \times \Omega_{\mathfrak{X}/\mathfrak{Y}}$ (here $(\Omega_{\mathfrak{X}/\mathfrak{Y}}^{\subseteq})^{\mathrm{op}}$ denote the image of $\Omega_{\mathfrak{X}/\mathfrak{Y}}^{\subset}$ under the automorphism of $\Omega_{\mathfrak{X}/\mathfrak{Y}} \times \Omega_{\mathfrak{X}/\mathfrak{Y}}$ given by swapping the two factors), and that we have

$$\pi_1^*\Omega_{\mathfrak{X}/\mathfrak{Y}}^{\subseteq} \cap \pi_3^*\Omega_{\mathfrak{X}/\mathfrak{Y}}^{\subseteq} \subseteq \pi_2^*\Omega_{\mathfrak{X}/\mathfrak{Y}}^{\subseteq}$$

as subobjects of $\Omega_{\chi/y} \times \Omega_{\chi/y} \times \Omega_{\chi/y}$, where

$$\pi_i:\Omega_{\mathfrak{X}/\mathfrak{Y}}\times\Omega_{\mathfrak{X}/\mathfrak{Y}}\times\Omega_{\mathfrak{X}/\mathfrak{Y}}\to\Omega_{\mathfrak{X}/\mathfrak{Y}}\times\Omega_{\mathfrak{X}/\mathfrak{Y}}$$

denotes the projection map which omits the ith factor.

The first demand encodes the requirement that the relation $\Omega_{\mathfrak{X}/\mathfrak{Y}}^{\subseteq}$ is reflexive and antisymmetric, and the second encodes transitivity.

(b) Rather than viewing $\Omega_{\chi/\mathcal{Y}}$ as an object of \mathcal{Y} , we can identify it with the functor that it represents, given by

$$Y \mapsto \operatorname{Hom}_{\mathcal{Y}}(Y, \Omega_{\mathfrak{X}/\mathcal{Y}}) \simeq \operatorname{Sub}(f^*Y)$$

The axioms of (a) translate to the requirement that, for each $Y \in \mathcal{Y}$, the image of the inclusion map

$$\operatorname{Hom}_{\mathcal{Y}}(Y, \Omega_{\mathfrak{X}/\mathcal{Y}}^{\subseteq}) \hookrightarrow \operatorname{Hom}_{\mathcal{Y}}(Y, \Omega_{\mathfrak{X}/\mathcal{Y}} \times \Omega_{\mathfrak{X}/\mathcal{Y}}) \simeq \operatorname{Sub}(f^*Y) \times \operatorname{Sub}(f^*Y)$$

determines a partial ordering of $\operatorname{Sub}(f^*Y)$. Of course, this is why those axioms are satisfied in the first place (by construction, this is just the partial order on $\operatorname{Sub}(f^*Y)$ given by inclusions of subobjects).

In other word, we can think of $\Omega_{\chi/y}$ as encoding a functor

$$\mathcal{Y}^{\mathrm{op}} \to \{ \text{Partially Ordered Sets} \}.$$

Such a functor is representable by a partially ordered object of \mathcal{Y} (in the sense of (a)) if and only if it is a sheaf with respect to the canonical topology on \mathcal{Y} .

(b') In the situation of (b), we can be more specific. Each the partially ordered sets $\operatorname{Sub}(f^*Y)$ is a locale, and each $Y \to Y'$ in \mathcal{Y} induces a map of posets $\operatorname{Sub}(f^*Y') \to \operatorname{Sub}(f^*Y)$ which preserves finite meets and arbitrary joins; that is, it can be regarded as a locale morphism from $\operatorname{Sub}(f^*Y)$ to $\operatorname{Sub}(f^*Y')$. We can therefore identify $\Omega_{\mathcal{X}/\mathcal{Y}}$ with a functor

$$\mathcal{Y} \to \{\text{Locales}\}.$$

We can do even better: in Lecture 17, we saw that each of the locale morphisms $\operatorname{Sub}(f^*Y) \to \operatorname{Sub}(f^*Y')$ is open. We therefore obtain a functor

 $\mathcal{Y} \to \{\text{Locales, Open Morphisms of Locales}\}.$

- (c) Given any category \mathcal{C} and a functor $P : \mathcal{C}^{\mathrm{op}} \to \{\text{Partially Ordered Sets}\}$, we can form a new category $\widetilde{\mathcal{C}}$ described as follows:
 - The objects of $\widetilde{\mathfrak{C}}$ are pairs (C, U), where $C \in \mathfrak{C}$ and $U \in P(C)$.
 - A morphism from (C, U) to (C', U') in $\tilde{\mathbb{C}}$ is a morphism $g : C \to C'$ with the property that $U \leq P(f)(U')$ (in the poset P(C)).

Note that the category $\widetilde{\mathbb{C}}$ is equipped with a forgetful functor $\pi : \widetilde{\mathbb{C}} \to \mathbb{C}$, given on objects by $\pi(C, U) = C$. Moreover, we can recover the original functor P from $\widetilde{\mathbb{C}}$ and the functor π . For each $C \in \mathbb{C}$, we can identify the poset P(C) with the fiber $\pi^{-1}\{C\}$. If $g : C \to C'$ is a morphism in \mathbb{C} and U' is an element of P(C'), identified with an object $\widetilde{C}' \in \widetilde{\mathbb{C}}$ satisfying $\pi(\widetilde{C}') = C'$, then we can identify $P(f)(U') \in P(C)$ with the largest element of the poset $\{\widetilde{C} \in \pi^{-1}\{C\} : (\exists \widetilde{g} : \widetilde{C} \to \widetilde{C}')[\pi(\widetilde{g}) = g]\}$. In fact, this construction determines an equivalence

{Functors $P : \mathbb{C}^{\text{op}} \to {\text{Posets}} \cong {\text{Functors } \pi : \widetilde{\mathbb{C}} \to \mathbb{C} \text{ which are fibered in posets}}.$

In the case of interest, we take $\mathcal{C} = \mathcal{Y}$ and $P : \mathcal{Y}^{\mathrm{op}} \to \{\text{Posets}\}$ to be the functor $Y \mapsto \mathrm{Sub}(f^* \mathcal{Y})$. In this case, we will denote the category $\widetilde{\mathcal{C}}$ by $\mathrm{Loc}(f)$; it can be described concretely as follows:

- The objects of Loc(f) are pairs (Y, U) where Y is an object of \mathcal{Y} and $U \subseteq f^*Y$ is a subobject in \mathfrak{X} . As a mnemonic aide, we will denote such an object by $(U \subseteq f^*Y)$.
- A morphism from $(U \subseteq f^*Y)$ to $(U' \subseteq f^*Y')$ is a morphism $g: Y \to Y'$ in the topos \mathcal{Y} satisfying $U \subseteq U' \times_{f^*Y'} f^*Y$ (as subobjects of f^*Y).

In what follows, it will be convenient to adopt perspective (c).

Remark 2. Let $f : \mathfrak{X} \to \mathfrak{Y}$ be a geometric morphism of topoi. Then the category Loc(f) has a forgetful functor to \mathfrak{X} , given by the construction $(U \subseteq f^*Y) \mapsto U$.

Remark 3. Let $f : \mathfrak{X} \to \mathfrak{Y}$ be a geometric morphism of topoi. Then the category Loc(f) admits finite limits. For example, given a pair of morphisms

$$(U_0 \subseteq f^*Y_0) \to (U_{01} \subseteq f^*Y_{01}) \leftarrow (U_1 \subseteq f^*Y_1),$$

the fiber product is given by $(U_0 \times_{U_{01}} U_1 \subseteq f^*(Y_0 \times_{Y_{01}} Y_1)).$

Exercise 4. Let $f : \mathfrak{X} \to \mathcal{Y}$ be a geometric morphism of topoi. Let us say that a collection of morphisms $\{(U_i \subseteq f^*Y_i) \to (U \subseteq f^*Y)\}_{i \in I}$ in the category $\operatorname{Loc}(f)$ is a *covering* if the diagram $\{U_i \to U\}$ is a covering in \mathfrak{X} . Show that this determines a Grothendieck topology on the category $\operatorname{Sub}(f)$. Note that we do *not* require that the objects Y_i cover Y.

Our next goal is to prove the following:

Theorem 5. Let $f : \mathfrak{X} \to \mathfrak{Y}$ be a localic geometric morphism. Then there is a canonical equivalence $\mathfrak{X} \simeq \operatorname{Shv}(\operatorname{Loc}(f))$. In particular, the topos \mathfrak{X} can be recovered from the fibration $\operatorname{Loc}(f) \to \mathfrak{Y}$ (or, equivalently, from \mathfrak{Y} together with the partially ordered object $\Omega_{\mathfrak{X}/\mathfrak{Y}}$).

The proof of Theorem 5 will require some preliminaries.

Notation 6. Let $\mathfrak{X}_0 \subseteq \mathfrak{X}$ be the full subcategory spanned by those objects $X \in \mathfrak{X}$ for which there exists a monomorphism $X \hookrightarrow f^*Y$, for some Y in \mathfrak{Y} . Note that the forgetful functor

$$\operatorname{Loc}(f) \to \mathfrak{X} \qquad (U \subseteq f^*Y) \mapsto U$$

factors through \mathcal{X}_0 (in fact, \mathcal{X}_0 is defined as the essential image of this forgetful functor).

Remark 7. The subcategory $\mathfrak{X}_0 \subseteq \mathfrak{X}$ is closed under finite limits. For example, if we are given a fiber product $X_0 \times_{X_{01}} X_1$ where X_0, X_{01} , and X_1 belong to \mathfrak{X}_0 , then we can choose monomorphisms $u: X_0 \hookrightarrow f^*Y_0$ and $v: X_1 \hookrightarrow f^*Y_1$ for some $Y_0, Y_1 \in \mathcal{Y}$. In this case, u and v induce a monomorphism $X_0 \times_{X_{01}} X_1 \hookrightarrow f^*(Y_0 \times Y_1)$.

Lemma 8. Let \mathcal{Z} be a topos and let $\mathcal{Z}_0 \subseteq \mathcal{Z}$ be a full subcategory satisfying the following conditions:

- (1) The full subcategory $Z_0 \subseteq Z$ contains a set of generators for Z.
- (2) The full subcategory $\mathcal{Z}_0 \subseteq \mathcal{Z}$ is closed under finite limits.

Then the Yoneda embedding induces an equivalence of categories $\mathbb{Z} \simeq \text{Shv}(\mathbb{Z}_0)$, where we equip \mathbb{Z}_0 with the Grothendieck topology given by the covering families in \mathbb{Z} .

Proof. When \mathcal{Z}_0 is small, we proved this in Lecture 10. The general case follows by writing \mathcal{Z}_0 as a union of small subcategories satisfying (1) and (2).

Corollary 9. Let $f : \mathfrak{X} \to \mathfrak{Y}$ be a localic geometric morphism of topoi, and let $\mathfrak{X}_0 \subseteq \mathfrak{X}$ be as in Notation ??. Then the Yoneda embedding induces an equivalence $\mathfrak{X} \simeq \text{Shv}(\mathfrak{X}_0)$, where \mathfrak{X}_0 is equipped with the Grothendieck topology given by the covering families in \mathfrak{X} .

In the situation of Theorem 5, we have a forgetful functor

$$\pi : \operatorname{Loc}(f) \to \mathfrak{X}_0 \qquad \pi(U \subseteq f^*Y) = U.$$

This functor preserves finite limits (Remark 3) and coverings, so that composition with π induces a functor $\operatorname{Shv}(\mathfrak{X}_0) \to \operatorname{Shv}(\operatorname{Loc}(f))$. We will complete the proof by establishing the following (which does not require the assumption that f is localic):

Proposition 10. Composition with π induces an equivalence of categories $Shv(\mathfrak{X}_0) \to Shv(Loc(f))$.

Sketch. Let $\mathscr{F} : \operatorname{Loc}(f)^{\operatorname{op}} \to \operatorname{Set}$ be a sheaf. Essentially, we need to show that for an object $(U \subseteq f^*Y) \in \operatorname{Loc}(f)$, the set $\mathscr{F}(U \subseteq f^*Y)$ depends only on $U \in \mathfrak{X}_0$, and not on the particular realization of U as a subobject of f^*Y . To this end, let us regard the object $U \in \mathfrak{X}_0$ as fixed, and suppose we are given two different monomorphisms $U \hookrightarrow f^*Y$ and $U \hookrightarrow f^*Y'$. The product then defines a monomorphism $U \hookrightarrow f^*Y$ and $U \hookrightarrow f^*Y'$.

$$\mathscr{F}(U \subseteq f^*Y) \to \mathscr{F}(U \subseteq f^*(Y \times Y')) \leftarrow \mathscr{F}(U \subseteq f^*Y').$$

We claim that these maps are bijective. This is a special case the following:

(*) Let U be a subobject of f^*Y , and suppose we are given a morphism $g: Y \to Z$ in \mathcal{Y} such that the composite map $U \hookrightarrow f^*Y \to f^*Z$ is still a monomorphism. Then the induced map $\mathscr{F}(U \subseteq f^*Z) \to \mathscr{F}(U \subseteq f^*Y)$ is bijective.

In the situation of (*), the map $(U \subseteq f^*Y) \to (U \subseteq f^*Z)$ is a covering (for the Grothendieck topology of Exercise 4). We therefore have an equalizer diagram of sets

$$\mathscr{F}(U \subseteq f^*Z) \to \mathscr{F}(U \subseteq f^*Y) \rightrightarrows \mathscr{F}(U \subseteq f^*(Y \times_Z Y)).$$

Consequently, to prove (*), it will suffice to show that two different projection maps $Y \times_Z Y \to Y$ induce the same map from $\mathscr{F}(U \subseteq f^*Y)$ to $\mathscr{F}(U \subseteq f^*(Y \times_Z Y))$. It is clear that these maps agree after composition with the map

$$\mathscr{F}(U \subseteq f^*(Y \times_Z Y)) \to \mathscr{F}(U \subseteq f^*Y)$$

given by composition with the diagonal map $\delta: Y \to Y \times_Z Y$. Consequently, to prove assertion (*) for the map $g: Y \to Z$, it will suffice to prove (*) for the map $\delta: Y \to Y \times_Z Y$. In particular, assertion (*) is true whenever g is a monomorphism (since in this case δ is an isomorphism). However, the map δ is always a monomorphism, and therefore satisfies (*); it follows that (*) is true in general.

Using (*) (and the discussion which precedes it), we see that we can identify $\mathscr{F}(U \subseteq f^*Y)$ with $\mathscr{G}(U)$, for some set $\mathscr{G}(U)$ which is independent of the embedding $U \hookrightarrow f^*Y$. We leave it to the reader to verify that the construction $U \mapsto \mathscr{G}(U)$ is functorial (hint: realize \mathscr{G} as the left Kan extension along the projection $\operatorname{Loc}(f)^{\operatorname{op}} \to \mathfrak{X}_0^{\operatorname{op}}$). We claim that \mathscr{G} is a sheaf on \mathfrak{X}_0 . To prove this, suppose we are given a covering $\{U_i \to U\}$ in \mathfrak{X}_0 . Choose monomorphisms

$$U \hookrightarrow f^*Y \qquad U_i \hookrightarrow f^*Y_i.$$

Then the diagram

$$\{(U_i \subseteq f^*(Y_i \times Y)) \to (U \subseteq f^*Y)\}$$

is a covering in Loc(f). Our assumption that \mathscr{F} is a sheaf then supplies an equalizer diagram

$$\mathscr{F}(U \subseteq f^*Y) \to \prod_i \mathscr{F}(U_i \subseteq f^*(Y_i \times Y)) \rightrightarrows \prod_{i,j} \mathscr{F}(U_i \times_U U_j \subseteq f^*(Y_i \times Y_j \times Y))$$

which we can rewrite as

$$\mathscr{G}(U) \to \prod_{i \in I} \mathscr{G}(U_i) \rightrightarrows \prod_{i,j} \mathscr{G}(U_i \times_U U_j)$$

It is now easy to verify that the construction $\mathscr{F} \mapsto \mathscr{G}$ determines an inverse to the functor $\operatorname{Shv}(\mathfrak{X}_0) \to \operatorname{Shv}(\operatorname{Loc}(f))$ given by composition with π .