
Lecture 19: Reconstruction of Localic Morphisms

March 9, 2018

Let f : X→ Y be a geometric morphism of topoi. In the previous lecture, we saw that there is an object
ΩX /Y of Y with the following universal property: for each object Y ∈ Y, we have a canonical bijection

HomY(Y,ΩX /Y) ' Sub(f∗Y ).

Our goal in this lecture is to explain that, if the morphism f is localic, then we can recover X from the topos
Y and the object ΩX /Y. For this, we need to endow ΩX /Y with a little bit of additional structure.

Exercise 1. Let f : X→ Y be a geometric morphism of topoi. Show that the functor

(Y ∈ Y) 7→ {U, V ∈ Sub(f∗Y ) : U ⊆ V }

is representable by an object Ω⊆
X /Y

of Y. Note that Ω⊆
X /Y

can then be viewed as a subobject of ΩX /Y×ΩX /Y.

We now consider several (essentially equivalent) ways of looking at the object ΩX /Y:

(a) We can think of ΩX /Y as a partially ordered object of Y (with partial order given by Ω⊆
X /Y

⊆ ΩX /Y ×
ΩX /Y). Concretely, this means that the intersection

Ω⊆
X /Y

∩ (Ω⊆
X /Y

)op

coincides with the image of the diagonal map ΩX /Y → ΩX /Y × ΩX /Y (here (Ω⊆
X /Y

)op denote the

image of Ω⊂
X /Y

under the automorphism of ΩX /Y × ΩX /Y given by swapping the two factors), and

that we have
π∗1Ω⊆

X /Y
∩ π∗3Ω⊆

X /Y
⊆ π∗2Ω⊆

X /Y

as subobjects of ΩX /Y × ΩX /Y × ΩX /Y, where

πi : ΩX /Y × ΩX /Y × ΩX /Y → ΩX /Y × ΩX /Y

denotes the projection map which omits the ith factor.

The first demand encodes the requirement that the relation Ω⊆
X /Y

is reflexive and antisymmetric, and

the second encodes transitivity.

(b) Rather than viewing ΩX /Y as an object of Y, we can identify it with the functor that it represents,
given by

Y 7→ HomY(Y,ΩX /Y) ' Sub(f∗Y ).

The axioms of (a) translate to the requirement that, for each Y ∈ Y, the image of the inclusion map

HomY(Y,Ω⊆
X /Y

) ↪→ HomY(Y,ΩX /Y × ΩX /Y) ' Sub(f∗Y )× Sub(f∗Y )

determines a partial ordering of Sub(f∗Y ). Of course, this is why those axioms are satisfied in the first
place (by construction, this is just the partial order on Sub(f∗Y ) given by inclusions of subobjects).
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In other word, we can think of ΩX /Y as encoding a functor

Yop → {Partially Ordered Sets}.

Such a functor is representable by a partially ordered object of Y (in the sense of (a)) if and only if it
is a sheaf with respect to the canonical topology on Y.

(b′) In the situation of (b), we can be more specific. Each the partially ordered sets Sub(f∗Y ) is a locale,
and each Y → Y ′ in Y induces a map of posets Sub(f∗Y ′) → Sub(f∗Y ) which preserves finite meets
and arbitrary joins; that is, it can be regarded as a locale morphism from Sub(f∗Y ) to Sub(f∗Y ′). We
can therefore identify ΩX /Y with a functor

Y→ {Locales}.

We can do even better: in Lecture 17, we saw that each of the locale morphisms Sub(f∗Y )→ Sub(f∗Y ′)
is open. We therefore obtain a functor

Y→ {Locales, Open Morphisms of Locales}.

(c) Given any category C and a functor P : Cop → {Partially Ordered Sets}, we can form a new category

C̃ described as follows:

– The objects of C̃ are pairs (C,U), where C ∈ C and U ∈ P (C).

– A morphism from (C,U) to (C ′, U ′) in C̃ is a morphism g : C → C ′ with the property that
U ≤ P (f)(U ′) (in the poset P (C)).

Note that the category C̃ is equipped with a forgetful functor π : C̃→ C, given on objects by π(C,U) =

C. Moreover, we can recover the original functor P from C̃ and the functor π. For each C ∈ C, we
can identify the poset P (C) with the fiber π−1{C}. If g : C → C ′ is a morphism in C and U ′ is

an element of P (C ′), identified with an object C̃ ′ ∈ C̃ satisfying π(C̃ ′) = C ′, then we can identify

P (f)(U ′) ∈ P (C) with the largest element of the poset {C̃ ∈ π−1{C} : (∃g̃ : C̃ → C̃ ′)[π(g̃) = g]}. In
fact, this construction determines an equivalence

{Functors P : Cop → {Posets}} ' {Functors π : C̃→ C which are fibered in posets}.

In the case of interest, we take C = Y and P : Yop → {Posets} to be the functor Y 7→ Sub(f∗ Y). In

this case, we will denote the category C̃ by Loc(f); it can be described concretely as follows:

– The objects of Loc(f) are pairs (Y,U) where Y is an object of Y and U ⊆ f∗Y is a subobject in
X. As a mnemonic aide, we will denote such an object by (U ⊆ f∗Y ).

– A morphism from (U ⊆ f∗Y ) to (U ′ ⊆ f∗Y ′) is a morphism g : Y → Y ′ in the topos Y satisfying
U ⊆ U ′ ×f∗Y ′ f

∗Y (as subobjects of f∗Y ).

In what follows, it will be convenient to adopt perspective (c).

Remark 2. Let f : X → Y be a geometric morphism of topoi. Then the category Loc(f) has a forgetful
functor to X, given by the construction (U ⊆ f∗Y ) 7→ U .

Remark 3. Let f : X → Y be a geometric morphism of topoi. Then the category Loc(f) admits finite
limits. For example, given a pair of morphisms

(U0 ⊆ f∗Y0)→ (U01 ⊆ f∗Y01)← (U1 ⊆ f∗Y1),

the fiber product is given by (U0 ×U01 U1 ⊆ f∗(Y0 ×Y01 Y1)).

2



Exercise 4. Let f : X → Y be a geometric morphism of topoi. Let us say that a collection of morphisms
{(Ui ⊆ f∗Yi)→ (U ⊆ f∗Y )}i∈I in the category Loc(f) is a covering if the diagram {Ui → U} is a covering
in X. Show that this determines a Grothendieck topology on the category Sub(f). Note that we do not
require that the objects Yi cover Y .

Our next goal is to prove the following:

Theorem 5. Let f : X → Y be a localic geometric morphism. Then there is a canonical equivalence
X ' Shv(Loc(f)). In particular, the topos X can be recovered from the fibration Loc(f)→ Y (or, equivalently,
from Y together with the partially ordered object ΩX /Y).

The proof of Theorem 5 will require some preliminaries.

Notation 6. Let X0 ⊆ X be the full subcategory spanned by those objects X ∈ X for which there exists a
monomorphism X ↪→ f∗Y , for some Y in Y. Note that the forgetful functor

Loc(f)→ X (U ⊆ f∗Y ) 7→ U

factors through X0 (in fact, X0 is defined as the essential image of this forgetful functor).

Remark 7. The subcategory X0 ⊆ X is closed under finite limits. For example, if we are given a fiber product
X0 ×X01 X1 where X0, X01, and X1 belong to X0, then we can choose monomorphisms u : X0 ↪→ f∗Y0 and
v : X1 ↪→ f∗Y1 for some Y0, Y1 ∈ Y. In this case, u and v induce a monomorphism X0×X01

X1 ↪→ f∗(Y0×Y1).

Lemma 8. Let Z be a topos and let Z0 ⊆ Z be a full subcategory satisfying the following conditions:

(1) The full subcategory Z0 ⊆ Z contains a set of generators for Z.

(2) The full subcategory Z0 ⊆ Z is closed under finite limits.

Then the Yoneda embedding induces an equivalence of categories Z ' Shv(Z0), where we equip Z0 with the
Grothendieck topology given by the covering families in Z.

Proof. When Z0 is small, we proved this in Lecture 10. The general case follows by writing Z0 as a union of
small subcategories satisfying (1) and (2).

Corollary 9. Let f : X→ Y be a localic geometric morphism of topoi, and let X0 ⊆ X be as in Notation ??.
Then the Yoneda embedding induces an equivalence X ' Shv(X0), where X0 is equipped with the Grothendieck
topology given by the covering families in X.

In the situation of Theorem 5, we have a forgetful functor

π : Loc(f)→ X0 π(U ⊆ f∗Y ) = U.

This functor preserves finite limits (Remark 3) and coverings, so that composition with π induces a functor
Shv(X0) → Shv(Loc(f)). We will complete the proof by establishing the following (which does not require
the assumption that f is localic):

Proposition 10. Composition with π induces an equivalence of categories Shv(X0)→ Shv(Loc(f)).

Sketch. Let F : Loc(f)op → Set be a sheaf. Essentially, we need to show that for an object (U ⊆ f∗Y ) ∈
Loc(f), the set F (U ⊆ f∗Y ) depends only on U ∈ X0, and not on the particular realization of U as
a subobject of f∗Y . To this end, let us regard the object U ∈ X0 as fixed, and suppose we are given
two different monomorphisms U ↪→ f∗Y and U ↪→ f∗Y ′. The product then defines a monomorphism
U ↪→ f∗(Y × Y ′). We therefore have a diagram of sets

F (U ⊆ f∗Y )→ F (U ⊆ f∗(Y × Y ′))← F (U ⊆ f∗Y ′).

We claim that these maps are bijective. This is a special case the following:
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(∗) Let U be a subobject of f∗Y , and suppose we are given a morphism g : Y → Z in Y such that the
composite map U ↪→ f∗Y → f∗Z is still a monomorphism. Then the induced map F (U ⊆ f∗Z) →
F (U ⊆ f∗Y ) is bijective.

In the situation of (∗), the map (U ⊆ f∗Y ) → (U ⊆ f∗Z) is a covering (for the Grothendieck topology
of Exercise 4). We therefore have an equalizer diagram of sets

F (U ⊆ f∗Z)→ F (U ⊆ f∗Y ) ⇒ F (U ⊆ f∗(Y ×Z Y )).

Consequently, to prove (∗), it will suffice to show that two different projection maps Y ×Z Y → Y induce the
same map from F (U ⊆ f∗Y ) to F (U ⊆ f∗(Y ×Z Y )). It is clear that these maps agree after composition
with the map

F (U ⊆ f∗(Y ×Z Y ))→ F (U ⊆ f∗Y )

given by composition with the diagonal map δ : Y → Y ×Z Y . Consequently, to prove assertion (∗) for the
map g : Y → Z, it will suffice to prove (∗) for the map δ : Y → Y ×Z Y . In particular, assertion (∗) is true
whenever g is a monomorphism (since in this case δ is an isomorphism). However, the map δ is always a
monomorphism, and therefore satisfies (∗); it follows that (∗) is true in general.

Using (∗) (and the discussion which precedes it), we see that we can identify F (U ⊆ f∗Y ) with G (U),
for some set G (U) which is independent of the embedding U ↪→ f∗Y . We leave it to the reader to verify
that the construction U 7→ G (U) is functorial (hint: realize G as the left Kan extension along the projection
Loc(f)op → X

op
0 ). We claim that G is a sheaf on X0. To prove this, suppose we are given a covering

{Ui → U} in X0. Choose monomorphisms

U ↪→ f∗Y Ui ↪→ f∗Yi.

Then the diagram
{(Ui ⊆ f∗(Yi × Y ))→ (U ⊆ f∗Y )}

is a covering in Loc(f). Our assumption that F is a sheaf then supplies an equalizer diagram

F (U ⊆ f∗Y )→
∏
i

F (Ui ⊆ f∗(Yi × Y )) ⇒
∏
i,j

F (Ui ×U Uj ⊆ f∗(Yi × Yj × Y )),

which we can rewrite as
G (U)→

∏
i∈I

G (Ui) ⇒
∏
i,j

G (Ui ×U Uj).

It is now easy to verify that the construction F 7→ G determines an inverse to the functor Shv(X0) →
Shv(Loc(f)) given by composition with π.
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