Lecture 19: Reconstruction of Localic Morphisms

March 9, 2018

Let f: X — Y be a geometric morphism of topoi. In the previous lecture, we saw that there is an object
Qx sy of J with the following universal property: for each object Y € Y, we have a canonical bijection

Homy (Y, Qx /y) ~ Sub(f*Y).

Our goal in this lecture is to explain that, if the morphism f is localic, then we can recover X from the topos
Y and the object (2 ,y. For this, we need to endow {2y ,y with a little bit of additional structure.

Exercise 1. Let f: X — Y be a geometric morphism of topoi. Show that the functor

(Y €Y) > {U,V € Sub(f*Y): U CV}

c

is representable by an object Q5 /Y of Y. Note that Q% /y can then be viewed as a subobject of Qx ,y xQx /y.

We now consider several (essentially equivalent) ways of looking at the object Qy /y:

(a)

We can think of Qx /y as a partially ordered object of Y (with partial order given by Q§/‘d CQx yx
Qy /y). Concretely, this means that the intersection

C - o
Qxy N Qx4

coincides with the image of the diagonal map Qy ,y — Qx,y x Qx ,y (here (Qj%/y)ols denote the

image of Q:)CC /Y under the automorphism of Qy /y x Qy ,y given by swapping the two factors), and
that we have
T8y ﬂ7r3ﬂx/y - WQQx/ld

as subobjects of Qx jy X Qy sy X Qx /y, where
Wi:Qx/ld XQx/xj XQx/y*)Qx/y Xﬂx/td

denotes the projection map which omits the ith factor.
The first demand encodes the requirement that the relation QD% /Y is reflexive and antisymmetric, and

the second encodes transitivity.

Rather than viewing 2x ,y as an object of YJ, we can identify it with the functor that it represents,
given by
Y — Homy (K Qx/y) jad Sub(f*Y)

The axioms of (a) translate to the requirement that, for each Y € Y, the image of the inclusion map
Homy (Y, Q5 /) < Homy (Y, Quc /1y X Qx /y) = Sub(f*Y) x Sub(f*Y)

determines a partial ordering of Sub(f*Y"). Of course, this is why those axioms are satisfied in the first
place (by construction, this is just the partial order on Sub(f*Y") given by inclusions of subobjects).



In other word, we can think of Qx ,y as encoding a functor
Y°P — {Partially Ordered Sets}.

Such a functor is representable by a partially ordered object of Y (in the sense of (a)) if and only if it
is a sheaf with respect to the canonical topology on Y.

(V') In the situation of (b), we can be more specific. Each the partially ordered sets Sub(f*Y") is a locale,
and each Y — Y’ in Y induces a map of posets Sub(f*Y”’) — Sub(f*Y) which preserves finite meets
and arbitrary joins; that is, it can be regarded as a locale morphism from Sub(f*Y") to Sub(f*Y”’). We
can therefore identify 2y ,y with a functor

Y — {Locales}.

We can do even better: in Lecture 17, we saw that each of the locale morphisms Sub(f*Y’) — Sub(f*Y”)
is open. We therefore obtain a functor

Y — {Locales, Open Morphisms of Locales}.

(c¢) Given any category € and a functor P : C°? — {Partially Ordered Sets}, we can form a new category
C described as follows:

— The objects of € are pairs (C,U), where C € C and U € P(C).
— A morphism from (C,U) to (C’,U’) in Cis a morphism ¢ : C — C’ with the property that
U < P(f)(U’) (in the poset P(C)).

Note that the category Cis equipped with a forgetful functor 7 : [ C, given on objects by 7(C,U) =
C. Moreover, we can recover the original functor P from € and the functor 7. For each C € C, we
can identify the poset P(C) with the fiber 7=1{C}. If g : C — C’ is a morphism in € and U’ is
an element of P(C"), identified with an object C' € C satisfying ’/T(él) = (', then we can identify
P(f)(U’) € P(C) with the largest element of the poset {C € 7= {C}: (37 : C — C")[x(3) = g]}. In
fact, this construction determines an equivalence

{Functors P : C°" — {Posets}} ~ {Functors  : € — € which are fibered in posets}.
In the case of interest, we take C =Y and P : Y°P — {Posets} to be the functor Y + Sub(f*Y). In
this case, we will denote the category € by Loc(f); it can be described concretely as follows:

— The objects of Loc(f) are pairs (Y,U) where Y is an object of Y and U C f*Y is a subobject in
X. As a mnemonic aide, we will denote such an object by (U C f*Y).

— A morphism from (U C f*Y) to (U’ C f*Y”) is a morphism g : Y — Y’ in the topos Y satisfying
U CU' xgys f*Y (as subobjects of f*Y).

In what follows, it will be convenient to adopt perspective (c).

Remark 2. Let f : X — Y be a geometric morphism of topoi. Then the category Loc(f) has a forgetful
functor to X, given by the construction (U C f*Y) — U.

Remark 3. Let f : X — Y be a geometric morphism of topoi. Then the category Loc(f) admits finite
limits. For example, given a pair of morphisms

(Uo C f*Yy) = (Uor C f*Yo1) < (U C f*Y7),

the fiber product is given by (Up xu,, Ur € f*(Yo Xyy, Y1)).



Exercise 4. Let f : X — Y be a geometric morphism of topoi. Let us say that a collection of morphisms
{(U; C f*Y:) = (U C f*Y)}ier in the category Loc(f) is a covering if the diagram {U; — U} is a covering
in X. Show that this determines a Grothendieck topology on the category Sub(f). Note that we do not
require that the objects Y; cover Y.

Our next goal is to prove the following:

Theorem 5. Let f : X — Y be a localic geometric morphism. Then there is a canonical equivalence
X ~ Shv(Loc(f)). In particular, the topos X can be recovered from the fibration Loc(f) — Y (or, equivalently,
from Y together with the partially ordered object Qx /vy ).

The proof of Theorem 5 will require some preliminaries.

Notation 6. Let Xy C X be the full subcategory spanned by those objects X € X for which there exists a
monomorphism X < f*Y for some Y in Y. Note that the forgetful functor

Loc(f) = X UCfY)—U
factors through Xy (in fact, Xg is defined as the essential image of this forgetful functor).

Remark 7. The subcategory Xy C X is closed under finite limits. For example, if we are given a fiber product
Xo X x4 X1 where Xo, Xo1, and X; belong to Xo, then we can choose monomorphisms v : Xg — f*Yy and
v: Xy <= f*Y for some Yy, Y7 € Y. In this case, v and v induce a monomorphism X x x,, X1 < f*(YoxY7).

Lemma 8. Let Z be a topos and let Zg C Z be a full subcategory satisfying the following conditions:
(1) The full subcategory Zo C Z contains a set of generators for Z.
(2) The full subcategory Zo C Z is closed under finite limits.

Then the Yoneda embedding induces an equivalence of categories Z ~ Shv(Zg), where we equip Zo with the
Grothendieck topology given by the covering families in Z.

Proof. When Z is small, we proved this in Lecture 10. The general case follows by writing Z( as a union of
small subcategories satisfying (1) and (2). O

Corollary 9. Let f : X — Y be a localic geometric morphism of topoi, and let Xo C X be as in Notation ?7.
Then the Yoneda embedding induces an equivalence X ~ Shv(Xy), where Xo is equipped with the Grothendieck
topology given by the covering families in X.

In the situation of Theorem 5, we have a forgetful functor
7 : Loc(f) — Xo (U C fY)="U.

This functor preserves finite limits (Remark 3) and coverings, so that composition with 7 induces a functor
Shv(Xo) — Shv(Loc(f)). We will complete the proof by establishing the following (which does not require
the assumption that f is localic):

Proposition 10. Composition with m induces an equivalence of categories Shv(Xy) — Shv(Loc(f)).

Sketch. Let F : Loc(f)°P — Set be a sheaf. Essentially, we need to show that for an object (U C f*Y) €
Loc(f), the set F(U C f*Y) depends only on U € Xy, and not on the particular realization of U as
a subobject of f*Y. To this end, let us regard the object U € Xy as fixed, and suppose we are given
two different monomorphisms U <« f*Y and U < f*Y’. The product then defines a monomorphism
U= f*(Y xY’). We therefore have a diagram of sets

FUC fY)= F(UC Y xY)) « FUC Y.

We claim that these maps are bijective. This is a special case the following:



(*) Let U be a subobject of f*Y, and suppose we are given a morphism g : Y — Z in Y such that the
composite map U < f*Y — f*Z is still a monomorphism. Then the induced map F(U C f*Z) —
Z (U C f*Y) is bijective.

In the situation of (x), the map (U C f*Y) — (U C f*Z) is a covering (for the Grothendieck topology
of Exercise 4). We therefore have an equalizer diagram of sets

FUCFZ) = FUCFY)=FUC (Y xzY)).

Consequently, to prove (x), it will suffice to show that two different projection maps Y x Y — Y induce the
same map from % (U C f*Y) to #(U C f*(Y xzY)). It is clear that these maps agree after composition
with the map

FUC (Y xzY)) = F(UC fY)

given by composition with the diagonal map ¢ : Y — Y xz Y. Consequently, to prove assertion (x) for the
map g : Y — Z, it will suffice to prove (x) for the map 6 : Y = Y xz Y. In particular, assertion (x) is true
whenever ¢ is a monomorphism (since in this case ¢ is an isomorphism). However, the map ¢ is always a
monomorphism, and therefore satisfies (x); it follows that (x) is true in general.

Using (%) (and the discussion which precedes it), we see that we can identify .# (U C f*Y) with 4(U),
for some set ¢(U) which is independent of the embedding U «— f*Y. We leave it to the reader to verify
that the construction U — ¢(U) is functorial (hint: realize ¢ as the left Kan extension along the projection
Loc(f)°P — XgP). We claim that ¢ is a sheaf on Xy. To prove this, suppose we are given a covering
{U; = U} in Xy. Choose monomorphisms

U< fY U; — Y.
Then the diagram
{(Us € ;7(Yi xY)) = (U C fY)}
is a covering in Loc(f). Our assumption that .# is a sheaf then supplies an equalizer diagram
FUCY) =7 Cr(ixY) = [[FWi v U; C (Vi x ¥ x Y)),
i i,j

which we can rewrite as
gU) - [[9W) = [[¢9U: xv U)).

el .3
It is now easy to verify that the construction .# — ¢ determines an inverse to the functor Shv(Xy) —
Shv(Loc(f)) given by composition with . O



