
Lecture 18X-Coverings in StoneC

April 6, 2018

Let C be an essentially small pretopos, which we regard as fixed throughout this lecture. In Lecture 16X,
we saw that the global sections functor induces an equivalence of categories

StoneC → Prowp(C)

(X,OX) 7→ Γ(X;OX).

The category Prowp(C) is equipped with a Grothendieck topology, where a collection of morphisms
{Pi → Q}i∈I is a covering if there exists some finite subset I0 ⊆ I such that the induced map∐

i∈I0

Pi → Q

is an effective epimorphism in Pro(C). Transporting this Grothendieck topology along the equivalence
Prowp(C) ' StoneC, we obtain a Grothendieck topology on the category StoneC. Our goal in this lecture is
to describe this topology more explicitly. Note that a collection of maps

{(Xi,OXi
), (Y,OY )}i∈I

in StoneC is a covering if and only if, for some finite subset I0 ⊆ I, the single map

(qi∈I0Xi,Oqi∈I0Xi
)→ (Y,OY )

is a covering (where Oqi∈I0Xi
denotes the sheaf whose restriction to each Xi is given by OXi

). It will
therefore be enough to characterize the singleton coverings. First, we need to introduce a bit of (nonstandard)
terminology.

Proposition 1. Let f : M → N be a morphism of models of C. The following conditions are equivalent:

(1) For every object C ∈ C, the map M(C)→ N(C) is injective.

(2) For every object C ∈ C and every subobject C0 ⊆ C, the diagram

M(C0) //

��

N(C0)

��
M(C) // N(C)

is a pullback square (in the category of sets).

Proof. Suppose that condition (2) is satisfied. Then, for each object C ∈ C, the diagram

M(C) //

��

N(C)

��
M(C × C) // N(C × C)
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is a pullback square, which is equivalent to the injectivity of the map M(C)→ N(C).
We now prove the converse. Let C be an object of C and let C0 ⊆ C be a subobject. Let R be the

equivalence relation on (C q 1) given by the join of C (embedded diagonally in C × C), C0 × C0, C0 × 1,
1×C0, and 1×1. Since C is a pretopos, the equivalence relation R is effective and we can form the quotient
D = (C q 1)/R. The object D can be described more simply as the pushout C qC0

1, and this pushout is
preserved by any morphism of pretopoi. In particular, for each model M of C, we can identify M(D) with
the pushout M(C)qM(C0) {∗} obtained by from M(C) by collapsing the subset M(C0) ⊆M(C) to a point.

Suppose that f : M → N is a map of models, so that f induces a map fD : M(D) → N(D). Let us
abuse notation by writing ∗ for the distinguished point in both M(D) and N(D). Then we have a canonical
bijection

f−1D {∗} ' {∗} ∪ {x ∈M(C) \M(C0) : fC(x) ∈ N(C0)}.

Consequently, if fD is injective, then the set {x ∈ M(C) \M(C0) : fC(x) ∈ N(C0)} is empty, which is
equivalent to the statement that the diagram

M(C0) //

��

N(C0)

��
M(C) // N(C)

is a pullback.

Definition 2. Let M and N be models of C. We will say that a morphism f : M → N is elementary if it
satisfies the equivalent conditions of Proposition 1.

Remark 3. The terminology of Definition 2 is intended to evoke the notion of an elementary embedding
in the setting of model theory: we can think of the subobject C0 ⊆ C as a “proposition” that can hold of
elements of M(C), where M is a model of C; elementary morphisms are those which preserve the truth of
such propositions.

Example 4. Let C be a Boolean pretopos. Then every morphism f : M → N in Mod(C) is elementary.
Given C0 ⊆ C in C, we tautologically have an inclusion

M(C0) ⊆ N(C0)×N(C) M(C);

the reverse inclusion follows by applying the same argument to a complement of C0 in C.

Warning 5. Let C be a pretopos and let C′ be its Booleanization. Then every model M of C can be
promoted (in an essentially unique way) to a model of C′. Let us abuse notation by denoting this model also
by M . For every pair of models M,N ∈ Mod(C), we have a canonical injection

HomMod(C′)(M,N)→ HomMod(C)(M,N).

If f : M → N is a morphism in Mod(C) which belongs to the image of this map, then f is necessarily
elementary. However, the converse need not be true (so the terminology of Definition 2 is perhaps misleading).

The relevance of Definition 2 for us is the following:

Theorem 6. Let f : (X,OX)→ (Y,OY ) be a morphism in StoneC. The following conditions are equivalent:

(1) The induced map Γ(X;OX)→ Γ(Y ;OY ) is an effective epimorphism in Pro(C).

(2) For each point y ∈ Y , there exists a point x ∈ X such that f(x) = y and the induced map of models
OY,y → OX,x is elementary.
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Corollary 7. Suppose that the pretopos C is Boolean. Then a map f : (X,OX) → (Y,OY ) induces an
effective epimorphism in Pro(C) if and only if the underlying map of topological spaces X → Y is surjective.

Proof. Combine Theorem 6 with Example 4.

Proof of Theorem 6. We proceed in several steps. Let f : P → Q be an arbitrary morphism in Pro(C).
Consider the following assertion:

(i) The map f : P → Q is an effective epimorphism in Pro(C).

We claim that (i) is equivalent to the following:

(ii) For every monomorphism U ↪→ V in Pro(C) and every commutative diagram

P //

f

��

U

��
Q //

??

V,

there exists a dotted arrow as indicated.

The implication (i)⇒ (ii) is clear. Conversely, if (ii) is satisfied for the inclusion Im(u) ↪→ Q, then assertion
(i) follows. We saw in Lecture 14X that every monomorphism in Pro(C) can be realized as a filtered inverse
limit of monomorphisms in C. Consequently, (ii) is equivalent to the following a priori weaker condition:

(iii) For every object C ∈ C and every subobject C0 ⊆ C, and every commutative diagram

P //

��

C0

��
Q //

??

C,

there exists a dotted arrow as indicated.

Let us now suppose that P = Γ(X;OX) and Q = Γ(Y ;OY ) for some objects (X,OX), (Y,OY ) ∈ StoneC.
Unwinding the definitions, we can rephrase (iii) as follows:

(iv) Let C ∈ C be an object, let sY ∈ Γ(Y ;OY )(C) = OC
Y (Y ), and let sX ∈ OC

X(X) be the image of sY .
Suppose that C0 is a subobject of C and that sX can be lifted to a global section of the subsheaf
OC0

X ⊆ OC
X . Then sY can be lifted to a global section of the subsheaf OC0

Y ⊆ OC
Y .

We can restate (v) in contrapositive form:

(v) Let C ∈ C be an object and let C0 ⊆ C be a subobject. Suppose we are given a global section
sY ∈ OC

Y (Y ) having image sX ∈ OC
X(X). If there exists a point y ∈ Y such that the stalk sY,y does

not belong to OC0

Y,y, then there exists a point x ∈ X such that sX,x does not belong to OC0

X,x.

Note that assertion (v) follows immediately from (2) (it suffices to choose x ∈ X for which f(x) = y
and the induced map OY,y → OX,x is an elementary morphism in Mod(C)). We will complete the proof by
showing that assertion (v) implies (2).

Assume that (iv) is satisfied, and fix a point y ∈ Y . We wish to show that there exists a point x ∈ X
such that f(x) = y and the induced map OY,y → OX,x is elementary. Suppose otherwise. Then, for each
point x ∈ f−1(y), the induced map OY,y → OX,x is not elementary. It follows that we can choose an object

C(x) ∈ C, a subobject C0(x) ⊆ C(x), and an element of ηx ∈ O
C(x)
Y,y which does not belong to O

C0(x)
Y,y , but

the image of ηx in O
C(x)
X,x belongs to O

C0(x)
X,x . Let Ux be an open neighborhood of x in f−1{y} for which the
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image of ηx in O
C(x)
X,x′ belongs to O

C0(x)
Y,y , for each x′ ∈ Ux. Since the fiber f−1{y} is compact, we can choose

finitely many points x1, . . . , xn ∈ f−1{y} for which the open sets Ux1 , Ux2 , . . . , Uxn cover the fiber f−1{y}.
Set C = C(x1)× · · · ×C(xn), and let C0 ⊆ C be the union of the subobjects C0(xi)×

∏
j 6=i C(xj). Then we

can identify {ηxi
}1≤i≤n with a point η ∈ OC

Y,y. By construction, η does not belong to OC0

Y,y, but the image of

η in OC
X,x belongs to OC0

X,x for each x ∈ f−1{y}.
Choose a lift of η to a point sV ∈ OC

Y (V ), for some open neighborhood V of Y . Let sf−1(V ) denote

the image of V in OC
X(f−1(V )). Then there is a largest open subset W ⊆ f−1(V ) for which the restriction

sf−1(V )|W is a section of the subsheaf OC0

X ⊆ OC
X . By construction, the open set W contains f−1{y}. Since

f is a proper map, we can choose a smaller open set V ′ ⊆ V such that y ∈ V ′ and f−1(V ′) ⊆W . Replacing
V by V ′, we can assume that sf−1(V ) belongs to OC0

X (f−1(V )).
Shrinking V further if necessary, we can arrange that V is both open and closed. In this case, we can

extend sV to a global section sY of the sheaf OCq1
Y ' OC

Y q1 (which is equal to sV on the open set V , and
carries the complement of V to the second summand of OCq1

Y ). Replacing C by the coproduct C q 1 and
C0 by the coproduct C0 q 1, we can assume that V = Y : that is, that sV is a global section of OC

Y . It then
follows from (v) (or (iv)) that sV is also a global section of the subsheaf OC0

Y ⊆ OC
Y , contradicting our choice

of η.

Corollary 8 (Amalgamation). Let f : M → N be an arbitrary morphism in Mod(C), and let g : M → M ′

be an elementary morphism in Mod(C). Then there exists a commutative diagram

M
g //

f

��

M ′

��
N

g′ // N ′

in Mod(C), where g′ is also elementary.

Proof. Let us regard g as a morphism (∗,M ′)→ (∗,M) in the category StoneC. By virtue of Theorem 6, this
is a covering (that is, it induces an effective epimorphism in Pro(C)). We can therefore choose a commutative
diagram

(∗,M) (∗,M ′)oo

(∗, N)

OO

(X,OX)oo

OO

in StoneC, where the bottom horizontal map is also a covering. Using Theorem 6 again, we can choose a
point x ∈ X for which the induced map N → OX,x is elementary. We then obtain a diagram in the category
Mod(C)

M
g //

f

��

M ′

��
N

g′ // OX,x

with the desired properties.
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