Lecture 18X-Coverings in Stonee

April 6, 2018

Let € be an essentially small pretopos, which we regard as fixed throughout this lecture. In Lecture 16X,
we saw that the global sections functor induces an equivalence of categories

Stonee — Pro™?(C)

(X,Ox) — F(X,Ox)

The category Pro"?(C) is equipped with a Grothendieck topology, where a collection of morphisms
{P; — Q};cs is a covering if there exists some finite subset Iy C I such that the induced map

[Ir-@
iclo

is an effective epimorphism in Pro(€). Transporting this Grothendieck topology along the equivalence
Pro™?(€) ~ Stonee, we obtain a Grothendieck topology on the category Stonee. Our goal in this lecture is
to describe this topology more explicitly. Note that a collection of maps

{(Xi’ oxi)’ (Ya OY)}iEI
in Stonee is a covering if and only if, for some finite subset Iy C I, the single map

(HiEIOXi7OH Xz) — (Y7 OY)

i€ly

is a covering (where Orr,., x, denotes the sheaf whose restriction to each X; is given by Ox,). It will
therefore be enough to characterize the singleton coverings. First, we need to introduce a bit of (nonstandard)
terminology.

Proposition 1. Let f : M — N be a morphism of models of C. The following conditions are equivalent:
(1) For every object C € €, the map M(C) — N(C) is injective.
(2) For every object C € C and every subobject Cy C C, the diagram

M(Co) — N(Co)

L

M(C)—— N(C)
is a pullback square (in the category of sets).

Proof. Suppose that condition (2) is satisfied. Then, for each object C € C, the diagram




is a pullback square, which is equivalent to the injectivity of the map M(C) — N(C).

We now prove the converse. Let C' be an object of C and let Cy C C be a subobject. Let R be the
equivalence relation on (C'II 1) given by the join of C' (embedded diagonally in C' x C), Cy x Cp, Cy X 1,
1 x Cy, and 1 x 1. Since € is a pretopos, the equivalence relation R is effective and we can form the quotient
D = (C111)/R. The object D can be described more simply as the pushout C II¢, 1, and this pushout is
preserved by any morphism of pretopoi. In particular, for each model M of €, we can identify M (D) with
the pushout M (C') (¢, {*} obtained by from M (C) by collapsing the subset M (Cp) € M(C') to a point.

Suppose that f : M — N is a map of models, so that f induces a map fp : M(D) — N(D). Let us
abuse notation by writing  for the distinguished point in both M (D) and N (D). Then we have a canonical
bijection

[5M0) = [} U € M(C)\ M(Co) : fela) € N(Co)}.
Consequently, if fp is injective, then the set {x € M(C)\ M(Cy) : fo(x) € N(Cp)} is empty, which is
equivalent to the statement that the diagram

M(Co) — N(Co)

M(C)—— N(C)
is a pullback. O

Definition 2. Let M and N be models of €. We will say that a morphism f : M — N is elementary if it
satisfies the equivalent conditions of Proposition 1.

Remark 3. The terminology of Definition 2 is intended to evoke the notion of an elementary embedding
in the setting of model theory: we can think of the subobject Cy C C as a “proposition” that can hold of
elements of M (C), where M is a model of C; elementary morphisms are those which preserve the truth of
such propositions.

Example 4. Let C be a Boolean pretopos. Then every morphism f : M — N in Mod(C€) is elementary.
Given Cy C C in €, we tautologically have an inclusion

M(Co) € N(Co) xn(cy M(C);
the reverse inclusion follows by applying the same argument to a complement of Cy in C.

Warning 5. Let C be a pretopos and let € be its Booleanization. Then every model M of € can be
promoted (in an essentially unique way) to a model of €’. Let us abuse notation by denoting this model also
by M. For every pair of models M, N € Mod(€), we have a canonical injection

HomMod(G/) (Ma N) - HomMod((‘?) (M7 N)

If f: M — N is a morphism in Mod(€) which belongs to the image of this map, then f is necessarily
elementary. However, the converse need not be true (so the terminology of Definition 2 is perhaps misleading).

The relevance of Definition 2 for us is the following:
Theorem 6. Let f: (X,0x) — (Y,0y) be a morphism in Stonee. The following conditions are equivalent:
(1) The induced map T'(X;0x) = T'(Y;Oy) is an effective epimorphism in Pro(C).

(2) For each point y € Y, there exists a point x € X such that f(xz) =y and the induced map of models
Oy,y = Ox 5 is elementary.



Corollary 7. Suppose that the pretopos C is Boolean. Then a map f : (X,0x) — (Y,0y) induces an
effective epimorphism in Pro(C) if and only if the underlying map of topological spaces X — Y is surjective.

Proof. Combine Theorem 6 with Example 4. O

Proof of Theorem 6. We proceed in several steps. Let f : P — @ be an arbitrary morphism in Pro(C).
Consider the following assertion:

(1) The map f: P — @ is an effective epimorphism in Pro(C).
We claim that (i) is equivalent to the following:

(#4) For every monomorphism U < V in Pro(€) and every commutative diagram

P——U

b

QH‘C

there exists a dotted arrow as indicated.

The implication (i) = (i) is clear. Conversely, if (i7) is satisfied for the inclusion Im(u) < @, then assertion
(i) follows. We saw in Lecture 14X that every monomorphism in Pro(€) can be realized as a filtered inverse
limit of monomorphisms in €. Consequently, (i7) is equivalent to the following a priori weaker condition:

(7i7) For every object C' € € and every subobject Cy C C, and every commutative diagram

P*>OO

L

QHC,

there exists a dotted arrow as indicated.

Let us now suppose that P =T'(X;0x) and @ =TI'(Y; Oy) for some objects (X, Ox), (Y, Oy) € Stonee.
Unwinding the definitions, we can rephrase (7ii) as follows:

(iv) Let C' € € be an object, let sy € T'(Y;0y)(C) = O%(Y), and let sx € OF(X) be the image of sy-.
Suppose that Cy is a subobject of C and that sx can be lifted to a global section of the subsheaf
05 € 0. Then sy can be lifted to a global section of the subsheaf O$° C 0F.

We can restate (v) in contrapositive form:

(v) Let C € C be an object and let Cy C C be a subobject. Suppose we are given a global section
sy € OY(Y) having image sy € O5(X). If there exists a point y € Y such that the stalk sy,y does
not belong to O}C,f’y, then there exists a point « € X such that sx , does not belong to O)C(OI

Note that assertion (v) follows immediately from (2) (it suffices to choose z € X for which f(z) =y
and the induced map Oy, — Ox , is an elementary morphism in Mod(C€)). We will complete the proof by
showing that assertion (v) implies (2).

Assume that (iv) is satisfied, and fix a point y € Y. We wish to show that there exists a point z € X
such that f(z) = y and the induced map Oy,, = Ox , is elementary. Suppose otherwise. Then, for each
point = € f~1(y), the induced map Oy, — Ox , is not elementary. It follows that we can choose an object
C(z) € €, a subobject Cy(z) C C(x), and an element of n, € O}C;,(;) which does not belong to ng’;z), but

the image of 7, in O)C(Ei) belongs to Og‘?gﬁ). Let U, be an open neighborhood of z in f~!{y} for which the



image of 1, in Og’;(i,) belongs to O}(’;";w), for each 2’ € U,. Since the fiber f~1{y} is compact, we can choose
finitely many points x1,...,2z, € f~'{y} for which the open sets U,,,Us,, ..., U, cover the fiber f=1{y}.
Set C' = C(x1) x -+ x C(xy), and let Cy € C be the union of the subobjects Co(;) % [[,; C(z;). Then we
can identify {n;, }1<i<n with a point 7 € O}C/’y. By construction, 1 does not belong to (‘)g?y, but the image of
7 in O%z belongs to Ogow for each = € f~{y}.

Choose a lift of 7 to a point sy € (910/(1/)7 for some open neighborhood V' of Y. Let sy-1(y) denote
the image of V in O (f~*(V)). Then there is a largest open subset W C f~1(V) for which the restriction
sg-1(vylw is a section of the subsheaf 05 € 05. By construction, the open set W contains f~{y}. Since
f is a proper map, we can choose a smaller open set V/ C V such that y € V’ and f~*(V') C W. Replacing
V by V', we can assume that s;-1(y) belongs to 0L (=1 (V).

Shrinking V further if necessary, we can arrange that V' is both open and closed. In this case, we can
extend sy to a global section sy of the sheaf OF™ ~ O 111 (which is equal to sy on the open set V, and
carries the complement of V' to the second summand of Ogul). Replacing C' by the coproduct C'II 1 and
Cy by the coproduct Cy II 1, we can assume that V' =Y that is, that sy is a global section of (‘J)C,. It then
follows from (v) (or (iv)) that sy is also a global section of the subsheaf 9O C 0%, contradicting our choice
of n. O

Corollary 8 (Amalgamation). Let f : M — N be an arbitrary morphism in Mod(C), and let g : M — M’
be an elementary morphism in Mod(€). Then there exists a commutative diagram

M2 M

i,

N2> N
in Mod(C), where ¢’ is also elementary.

Proof. Let us regard g as a morphism (x, M') — (x, M) in the category Stonee. By virtue of Theorem 6, this
is a covering (that is, it induces an effective epimorphism in Pro(€)). We can therefore choose a commutative
diagram

(*5M> - (*7M/>

]

(*7N)<7 (XvOX)

in Stonee, where the bottom horizontal map is also a covering. Using Theorem 6 again, we can choose a
point € X for which the induced map N — Ox ; is elementary. We then obtain a diagram in the category
Mod (@)
M2\
g/

NHOXJ

with the desired properties. O



