
Lecture 18: Localic Morphisms

March 10, 2018

In Lecture 17, we introduced the notion of an open morphism (and of an open surjection) between topoi.
Our first goal in this lecture is to provide a nontrivial example:

Proposition 1. The geometric morphism ϕ : Shv(Equiv(Z))→ XSet 6=∅ constructed in Lecture 16 is an open
surjection.

Proof. Let us identify the classifying topos XSet 6=∅ of nonempty sets with the category of functors Fun(Set 6=∅fin , Set).

For every nonempty finite set S, let hS : Set 6=∅fin → Set denote the functor corepresented by S, given by the
formula hS(T ) = Hom(S, T ) = TS . Equivalently, we can identify hS with XS

0 , where X0 ∈ XSet 6=∅ is the

“universal nonempty object” appearing in Lecture 16 (given by the inclusion map Set 6=∅fin ↪→ Set).
The objects hS generate the topos XSet6=∅ . We first show that for each S, the associated morphism of

locales
Sub(ϕ∗hS)→ Sub(hS)

is an open surjection. Note that we can identify ϕ∗hS with FS , where F is the sheaf on Equiv(Z) whose
stalk at a point E ∈ Equiv(Z) is given FE = Z/E.

Let’s begin by analyzing the poset Sub(hS). By definition, we can identify the elements of hS with
subfunctors of hS . Such a subobject is specified by giving a property P of maps between finite sets S → T ,
having the property that for every map f : S → T with the property P and any map g : T → T ′, the
composite map (g ◦ f) : S → T ′ also has the property P . Note that each f factors canonically as a
composition

S → S/Ef ↪→ T,

where Ef is the equivalence relation given by (sEfs
′)⇔ (f(s) = f(s′)). It follows that if the quotient map

S → S/Ef has the property P , then the map f also has the property P . Conversely, if f has the property
P , then the quotient map S → S/Ef must also have the property P , since there exists a retraction of T
back onto the quotient S/Ef (here we use the fact that S is not empty).

Let Equiv(S) denote the collection of all equivalence relations on S. From the preceding discussion, we
obtain an injective map

{Subobjects of hS} ↪→ {Subsets of Equiv(S)}

which carries a subobject F ⊆ hS to the collection of all equivalence relations E ∈ Equiv(S) for which the
quotient map S → S/E belongs to F (S/E) ⊆ hS(S/E) = Hom(S, S/E). This map is not surjective: its
image consists of the collection of all subsets U ⊆ Equiv(S) having the property that if any refinement of
an equivalence relation E belongs to U , then E also belongs to U . Put another way, the image consists
of the collection of all open subsets of Equiv(S), where we equip Equiv(S) with the topology generated by
sub-basic open sets Us,s′ = {E ∈ Equiv(S) : sEs′}.

We can identify the sheaf FS ∈ Shv(Equiv(Z)) with a topological space ˜Equiv(Z)S equipped with a

local homeomorphism ˜Equiv(Z)S → Equiv(Z). The points of ˜Equiv(Z)S are given by pairs (E, ρ), where E
is an equivalence relation on Z and ρ : S → Z/E is a map of sets. Under this identification, subobjects of
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FS correspond to open subsets of ˜Equiv(Z), and the map of locales Sub(ϕ∗hS) → Sub(hS) arises from a
continuous map of topological spaces

πS : ˜Equiv(Z)S → Equiv(S)

which carries a pair (E, ρ : S → Z/E) to the equivalence relation

Eρ := {(s, s′) ∈ S2 : ρ(s) = ρ(s′)} ∈ Equiv(S).

To complete the proof, it will suffice to show that π is an open surjection of topological spaces. It is clearly
a surjection: every quotient of S can be embedded into a suitable quotient of Z (here we invoke the fact

that Z is infinite). To show that it is open, let U ⊆ ˜Equiv(S)S be an open set containing a point (E, ρ).
We wish to show that πS(U) contains an open neighborhood of Eρ. In other words, we wish to show that if
Eρ is a refinement of some equivalence relation ' on S, then we can find some other (E′, ρ′) ∈ U such that
E′ρ′ ='. For this, we simply take E′ to be the equivalence relation on Z corresponding to the quotient map

Z→ (Z/E)qIm(ρ) (S/ '), and ρ′ to be the composite map S
ρ−→ Z/E → Z/E′.

To complete the proof, it will suffice to verify clause (2′) appearing in Proposition 14 of the previous
lecture (for the set of generators {hS}S∈Set∅fin

), it will suffice to show that for every map of nonempty finite

sets α : S → T , the diagram of topological spaces

˜Equiv(Z)T

πT

��

φ // ˜Equiv(Z)S

πS

��
Equiv(T )

ψ // Equiv(S)

has the property that ψ−1(πS(U)) = πT (φ−1U) for each open set U ⊆ ˜Equiv(Z)S as above. Suppose we
are given a point (E, ρ) of U and that Eρ is the restriction an equivalence relation ET on the set T . We
wish to show that, after replacing (E, ρ) by another point of U , we can arrange that ρ extends to a map
ρ̃ : T → Z/E satisfying ET = Eρ̃. Equivalently, we wish to show that, possibly after changing (E, ρ), the
monomorphism S/Eρ ↪→ Z/E can be extended to a monomorphism T/ET ↪→ Z/E. This is always possible
when the quotient Z/E is infinite, which can always be arranged by refining the equivalence relation E.

Let’s now return to the picture of Lecture 16. Let X be a topos containing a set of generators {Xi}i∈I .
Set X =

∐
i∈I , assume that X → 1 is an effective epimorphism (which can always be arranged by including

1 as a generator), and form a pullback diagram

Enum(X)
π //

��

X

��
Shv(Equiv(Z)) // XSet 6=∅

(we’ll show later that such a thing exists). We would like to argue that Enum(X) is localic. To prove this,
it will be convenient to introduce a relative version of the condition of being localic.

Definition 2. Let f : X→ Y be a geometric morphism of topoi. We will say that f is localic (or that X is
localic relative to Y) if there exist generators {Xi} for X, each of which appears as a subobject of f∗Yi for
some Yi ∈ Y.

Example 3. Let X be a topos with a set of generators {Xi}i∈I , and set X =
∐
i∈I Xi. Then X is classified

by a geometric morphism ρ : X→ XSet, characterized by the requirement that X ' ρ∗X0 where X0 ∈ XSet is
the “universal” object. The geometric morphism ρ is localic: by construction, X is generated by subobjects
of ρ∗X0. (If X → 1 is an effective epimorphism, then the classifying map X→ XSet6=∅ is likewise localic).
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Proposition 4. Let f : X→ Y be a geometric morphism of topoi. Then:

(1) If X is localic, f is localic.

(2) If Y is localic and f is localic, then X is localic.

Proof. If X is localic, then it is generated by subobjects of 1X ' f∗1Y, so that f is localic. This proves (1).
To prove (2), assume that Y is localic and that f is localic. Since f is localic, every object X ∈ X admits
a covering {Ui → X}, where each Ui appears as a subobject of f∗Yi for some Yi ∈ Y. Since Y is localic,
each Yi admits a covering {Vi,j → Yi}, where each Vi,j is a subobject of 1Y. Then X admits a covering
{(f∗Vi,j)×f∗Yi Ui → X}, where each (f∗Vi,j)×f∗Yi Ui is a subobject of f∗1Y ' 1X.

Corollary 5. Let X be a topos, so that there is an essentially unique geometric morphism f : X → Set.
Then X is localic if and only if f is localic.

We now consider a relative version of Proposition 4:

Proposition 6. Let f : X→ Y and g : Y→ Z be geometric morphisms of topoi. Then:

(1) If g ◦ f is localic, then f is localic.

(2) If f and g are localic, then g ◦ f is localic.

Proof. Assertion (1) follows from the observation that every subobject of (g ◦ f)∗(Z) is a subobject of an
object of the form f∗Y , by taking Y = g∗Z. To prove (2), assume that f and g are localic. For each object
X ∈ X, we can find a cover {Ui → X}, where each Ui is a subobject of some f∗Yi. Then each Yi admits a
cover {Vi,j → Yi}, where each Vi,j is a subobject of some g∗Zi,j ∈ Z. It follows that X admits a covering
{f∗(Vi,j)×f∗Yi

Ui → X} where each f∗(Vi,j)×f∗Yi
Ui can be regarded as a subobject of (g ◦ f)∗Zi,j .

In Lecture 14, we showed that the datum of a localic topos X is determined by the datum of its underlying
localic Sub(1X). Our next goal will be to establish a relative version of this observation, where we encode
the datum of a localic geometric morphism f : X → Y in terms of a single “partially ordered” object of Y.
First, we need the following general fact:

Proposition 7. Let X be a topos, and regard the construction X 7→ Sub(X) as a contravariant functor from
X to the category of sets (carrying each morphism f : X → Y to the inverse image map f−1 : Sub(Y ) →
Sub(X)). Then the functor X 7→ Sub(X) is representable. In other words, there exists an object ΩX and
bijections Sub(X) ' HomX(X,ΩX) depending functorially on X.

Remark 8. The object ΩX appearing in the statement of Proposition 7 is called a subobject classifier of X.

Proof of Proposition 7. The proof of Giraud’s theorem shows that the Yoneda embedding h : X→ Fun(Xop, Set)
induces an equivalence of X with the category of sheaves on itself, where we equip X with the topology given
by the coverings. It will therefore suffice to show that the construction X 7→ Shv(X) is a sheaf. In other
words, we must show that for every covering {Ui → X}i∈I , the diagram of sets

Sub(X)→
∏
i∈I

Sub(Ui) ⇒
∏
i,j∈I

Sub(Ui ×X Uj)

is an equalizer. Note that a subobject V ⊆ X be recovered as the join
∨
i∈I Im(Ui ×X V → X), so the map

Sub(X) →
∏
i∈I Sub(Ui) is injective. Conversely, suppose we are given an element of

∏
i∈I Sub(Ui), given

by a collection of subobjects Vi ⊆ Ui. Set V =
∨
i∈I Im(Vi → X). Then, for each j ∈ I, we have

V ×X Uj = (
∨
i∈I

Im(Vi → X))×X Uj

=
∨
i∈I

(Im(Vi → X)×X Uj)

=
∨
i∈I

(Im(Vi ×X Uj → Uj).
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If {Vi}i∈I belongs to the equalizer, then we can rewrite this as∨
i∈I

Im(Ui ×X Vj → Uj) =
∨
i∈I

Im(Ui ×X Vj → Vj)

=
∨
i∈I

(Im(Ui → X)×X Vj)

= (
∨
i∈I

Im(Ui → X))×X Vj

= X ×X Vj

= Vj .

Corollary 9. Let f : X→ Y be a geometric morphism of topoi. Then the functor

Y→ Set Y 7→ Sub(f∗Y )

is representable by an object ΩX /Y ∈ Y.

Proof. Take ΩX /Y = f∗ΩX, where ΩX is a subobject classifier of X and f∗ is right adjoint to f∗.

Example 10. In the situation of Corollary 9, suppose that Y = Set is the topos of sets. Then we have

ΩX /Y = HomSet(1Set,ΩX /Y)

' Sub(f∗1Set)

' Sub(1X).

In other words, we can identify ΩX /Y with the underlying locale of the topos X.

We will see in the next lecture that a localic morphism f : X → Y can be recovered from the object
ΩX /Y ∈ Y (together with a suitable partial ordering of it).
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