Lecture 17: Open Morphisms

March 10, 2018

Let $f: X \to Y$ be a continuous map of topological spaces. We say that f is *open* if, for every open subset $U \subseteq X$, the image f(U) is an open subset of Y. In this case, the construction $U \mapsto f(U)$ determines a map of posets

$$f_!: \mathcal{U}(X) \to \mathcal{U}(Y).$$

We observe that $f_!$ can be characterized as the *left adjoint* of the inverse image map

 $f^* : \mathcal{U}(Y) \to \mathcal{U}(X) \qquad V \mapsto f^{-1}(V).$

In other words, for open subsets $U \subseteq X$ and $V \subseteq Y$, we have $(f(U) \subseteq V) \Leftrightarrow (U \subseteq f^{-1}(V))$. This motivates the following:

Definition 1. Let \mathcal{U} and \mathcal{V} be locales, and let $f : \mathcal{U} \to \mathcal{V}$ be a morphism of locales, which we identify with a map of posets $f^* : \mathcal{V} \to \mathcal{U}$ which preserves finite meets and arbitrary joins. We say that f is *open* if it satisfies the following conditions:

- (1) The map f^* admits a left adjoint $f_! : \mathcal{U} \to \mathcal{V}$. That is, for each $U \in \mathcal{U}$, there exists an object $f_!(U) \in \mathcal{V}$ such that $(f_!(U) \leq V) \Leftrightarrow (U \leq f^*(V))$, for each $V \in \mathcal{V}$.
- (2) The map f_1 satisfies the projection formula $f_1(U \wedge f^*V) = f_1(U) \wedge V$ for $U \in \mathcal{U}$ and $V \in \mathcal{V}$.

Example 2. Let $f : X \to Y$ be an open map of topological spaces. Then the induced map of locales $\mathcal{U}(X) \to \mathcal{U}(Y)$ is open. The projection formula of Definition 1 follows from the identity $f(U \cap f^{-1}(V)) = f(U) \cap V$ for $U \subseteq X$ and $V \subseteq Y$.

Warning 3. The converse of Example 2 need not hold, even if X and Y are assumed to be sober.

Proposition 4. Let $f: X \to Y$ be a map of topological spaces, and suppose that every point of Y is closed (this condition is satisfied, for example, if Y is Hausdorff). If the map of posets $f^*: U(Y) \to U(X)$ admits a left adjoint f_1 , then f is open. In particular, if the map of locales $U(X) \to U(Y)$ is open, then f is open.

Proof. Let $U \subseteq X$ be an open set; we wish to show that $f(U) \subseteq Y$ is open. We will complete the proof by showing that $f(U) = f_!(U)$. By definition, $f_!(U)$ is the smallest open subset of Y which contains f(U). Conversely, suppose that $y \in Y$ is a point which does not belong to f(U). Since y is closed, the complement $Y - \{y\}$ is an open subset of Y which contains f(U), so we have $f_!(U) \subseteq Y - \{y\}$. It follows that y does not belong to $f_!(U)$.

Example 5. Let Y be the Sierpinski space, consisting of a closed point x and an open point η . Let $X = \{x\}$ be the subset consisting only of the closed point. Then:

- The inclusion map $X \hookrightarrow Y$ is not open (as a map of topological spaces).
- The map of posets $f^{-1}: \mathcal{U}(Y) \to \mathcal{U}(X)$ has a left adjoint $f_!: \mathcal{U}(X) \to \mathcal{U}(Y)$.

• The map of locales $\mathcal{U}(X) \to \mathcal{U}(Y)$ is not open, because the map $f_!$ does not satisfy the projection formula: we have

$$\{\eta\} = f_!(X) \cap \{\eta\} \neq f_!(X \cap f^{-1}\{\eta\}) = f_!(\emptyset) = \emptyset.$$

Definition 6. Let $f : \mathcal{U} \to \mathcal{V}$ be a morphism of locales. We will say that f is an *open surjection* if it is open and $f_!(\mathbf{1}_{\mathcal{U}}) = \mathbf{1}_{\mathcal{V}}$, where $\mathbf{1}_{\mathcal{U}}$ and $\mathbf{1}_{\mathcal{V}}$ denote the largest elements of \mathcal{U} and \mathcal{V} , respectively.

Remark 7. Let $f : \mathcal{U} \to \mathcal{V}$ be an open surjection. Then, for each $V \in \mathcal{V}$, we have

$$V = \mathbf{1}_{\mathcal{V}} \wedge V = f_!(\mathbf{1}_{\mathcal{U}}) \wedge V = f_!(\mathbf{1}_{\mathcal{U}} \wedge f^*V) = f_!f^*V.$$

It follows that an open morphism f is an open surjection if and only if the counit map $f_! f^* \to i d_{\mathcal{V}}$ is an isomorphism.

Example 8. Let $f : X \to Y$ be a map of topological spaces. If f is an open surjection, then the induced map of locales $\mathcal{U}(X) \to \mathcal{U}(Y)$ is an open surjection. The converse holds if every point of Y is closed.

Remark 9. Let $f : \mathcal{U} \to \mathcal{V}$ and $g : \mathcal{V} \to \mathcal{W}$ be morphisms of locales. If f and g are open (respectively open surjections), then the composition $g \circ f$ is also open (respectively an open surjection). The map $(g \circ f)_!$ is given by $g_! \circ f_!$, and the projection formula follows from the calculation

$$(g \circ f)_!(U) \land W = g_!(f_!(U)) \land W = g_!(f_!(U) \land g^*W) = g_!(f_!(U \land f^*g^*W)) = (g \circ f)_!(U \land (g \circ f)^*W).$$

Example 10. Let \mathfrak{X} be a topos and let $f: X \to Y$ be a morphism between objects of \mathfrak{X} . Then the construction

$$(V \subseteq Y) \mapsto (V \times_Y X \subseteq X)$$

determines a map of locales $Sub(X) \to Sub(Y)$. This map is automatically open: it has a left adjoint given by the construction

$$(U \subseteq X) \mapsto (\operatorname{Im}(U \to Y) \subseteq Y),$$

and the projection formula follows from the calculation

$$Im(U \to Y) \times_Y V = Im(U \times_Y V \to V)$$
$$= Im(U \times_X (X \times_Y V) \to Y).$$

Remark 11. In the situation of Example 10, the map of locales $Sub(X) \to Sub(Y)$ is an open surjection if and only if f is an effective epimorphism.

Definition 12. Let $f : \mathfrak{X} \to \mathfrak{Y}$ be a geometric morphism of topoi. We say that f is *open* if it satisfies the following conditions: Then, for every object $Y \in \mathfrak{Y}$, the pullback functor f^* determines a map from $\operatorname{Sub}(Y)$ to $\operatorname{Sub}(f^*Y)$ which preserves arbitrary joins and finite meets; that is, it determines a map of locales $f_Y : \operatorname{Sub}(f^*(Y)) \to \operatorname{Sub}(Y)$.

We say that f is *open* if it satisfies the following:

- (1) For each $Y \in \mathcal{Y}$, the map of posets $f_Y^* : \operatorname{Sub}(Y) \to \operatorname{Sub}(f^*)$ admits a left adjoint $f_{Y!}$.
- (2) For every morphism $Y' \to Y$ in \mathcal{Y} and each subobject $U \subseteq Y$, we have $Y' \times_Y (f_{Y!}U) = f_{Y'!}(f^*Y' \times_{f^*Y}U)$ (as subobjects of Y').

Note that (1) and (2) imply that each $f_Y : \operatorname{Sub}(f^*(Y)) \to \operatorname{Sub}(Y)$ is an open morphism of locales (the projection formula follows by applying (2) in the case where Y' is a subobject of Y). We say that f is an open surjection if each f_Y is an open surjection of locales.

Remark 13. Let $f : \mathfrak{X} \to \mathfrak{Y}$ be an open geometric morphism (respectively open surjection) of topoi. Then the induced map of locales $\operatorname{Sub}(\mathbf{1}_{\mathfrak{X}}) \to \operatorname{Sub}(\mathbf{1}_{\mathfrak{Y}})$ is open (respectively an open surjection).

In the situation of Definition 12, we do not need to consider *every* object $Y \in \mathcal{Y}$; it suffices to check on a set of generators.

Proposition 14. Let $f : \mathfrak{X} \to \mathfrak{Y}$ be a geometric morphism of topoi. Suppose that there exists a collection of generators \mathfrak{Y}_0 satisfying the following:

- (1') For each $Y \in \mathcal{Y}_0$, the map of posets $f_Y^* : \operatorname{Sub}(Y) \to \operatorname{Sub}(f^*)$ admits a left adjoint $f_{Y!}$.
- (2') For every morphism $Y' \to Y$ between objects of \mathcal{Y}_0 and each subobject $U \subseteq Y$, we have $Y' \times_Y (f_{Y!}U) = f_{Y'!}(f^*Y' \times_{f^*Y} U)$ (as subobjects of Y').

Then f is open. Moreover, if the map of locales $f_Y : \operatorname{Sub}(f^*Y) \to \operatorname{Sub}(Y)$ is an open surjection for each $Y \in \mathcal{Y}_0$, then f is an open surjection.

Proof. Let Y be an arbitrary object of \mathcal{Y} , and choose a covering $\{Y_i \to Y\}_{i \in I}$ where each Y_i belongs to \mathcal{Y}_0 . Then $\{f^*Y_i \to f^*Y\}_{i \in I}$ is a covering in the topos X. Then then abve

$$\begin{array}{ll} (U \subseteq f^*V) & \Leftrightarrow & (\forall i \in I)(U \times_{f^*Y} f^*Y_i \subseteq f^*V \times_{f^*Y} f^*Y_i) \\ & \Leftrightarrow & (\forall i \in I)(U \times_{f^*Y} f^*Y_i \subseteq f^*(V \times_Y Y_i) \\ & \Leftrightarrow & (\forall i \in I)f_{Y_i!}(U \times_{f^*Y} f^*Y_i) \subseteq V \times_Y Y_i \\ & \Leftrightarrow & (\forall i \in I)\operatorname{Im}(f_{Y_i!}(U \times_{f^*Y} f^*Y_i) \to Y) \subseteq V \\ & \Leftrightarrow & \bigvee_{i \in I}\operatorname{Im}(f_{Y_i!}(U \times_{f^*Y} f^*Y_i) \to Y) \subseteq V. \end{array}$$

It follows that the map of posets f_Y^* has a left adjoint $f_{Y!}$, given by the formula

$$f_{Y!}(U) = \bigvee_{i \in I} \operatorname{Im}(f_{Y_i}(U \times_{f^*Y} f^*Y_i) \to Y).$$

That is, f satisfies condition (1) of Definition 12.

We now verify condition (2). Let $\{Y_i \to Y\}$ be as above, and suppose we are given a morphism $Y' \to Y$ in \mathcal{Y} . For each $i \in I$, choose a covering $\{Y'_{i,j} \to Y_i \times_Y Y'\}$ where each $Y'_{i,j}$ belongs to \mathcal{Y}_0 , so that the $Y'_{i,j}$ comprise a covering of Y'. For $U \in \text{Sub}(f^*Y)$, we compute

$$\begin{split} f_{Y'!}(U \times_{f^*Y} f^*Y') &= \bigvee_{i,j} \operatorname{Im}(f_{Y'_{i,j}!}(U \times_{f^*Y} f^*Y' \times_{f^*Y'} f^*Y'_{i,j}) \to Y') \\ &= \bigvee_{i,j} \operatorname{Im}(f_{Y'_{i,j}!}(U \times_{f^*Y} f^*Y'_{i,j}) \to Y') \\ &= \bigvee_{i,j} \operatorname{Im}(f_{Y_i!}(U \times_{f^*Y} f^*Y_i) \times_{Y_i} Y'_{i,j} \to Y') \\ &= \bigvee_{i} \operatorname{Im}(f_{Y_i!}(U \times_{f^*Y} f^*Y_i) \times_{Y_i} (Y_i \times_Y Y') \to Y') \\ &= \bigvee_{i} \operatorname{Im}(f_{Y_i!}(U \times_{f^*Y} f^*Y_i) \times_Y Y' \to Y') \\ &= \bigvee_{i} (\operatorname{Im}(f_{Y_i!}(U \times_{f^*Y} f^*Y_i) \to Y) \times_Y Y') \\ &= (\bigvee_{i} \operatorname{Im}(f_{Y_i!}(U \times_{f^*Y} f^*Y_i) \to Y)) \times_Y Y' \\ &= (f_{Y!}U) \times_Y Y'. \end{split}$$

Here the first equality follows from the construction of $f_{Y'!}$, the third from assumption (2'), the fourth from the fact that $\{Y'_{i,j} \to Y_i \times_Y Y'\}$ is a covering for each $i \in I$, the sixth from the fact that the formation of images commutes with pullback, the seventh from the fact that joins commute with pullback, and the eighth from the construction of $f_{Y!}$.

We conclude by observing that if f_{Y_i} is an open surjection, then we have

$$f_{Y!}(f^*(Y)) = \bigvee_{i \in I} \operatorname{Im}(f_{Y_i!}(f^*Y \times_{f^*Y} f^*Y_i) \to Y) = \bigvee_{i \in I} \operatorname{Im}(Y_i \to Y) = Y,$$

so that f_Y is also an open surjection.

Corollary 15. Let \mathcal{X} be a topos and let \mathcal{U} be a locale. Suppose we are given a geometric morphism $f : \mathcal{X} \to$ Shv (\mathcal{U}) , which we can identify with a morphism of locales g :Sub $(\mathbf{1}_{\mathcal{X}}) \to \mathcal{U}$. Then f is an open morphism of topoi (in the sense of Definition 12) if and only if g is an open morphism of locales (in the sense of Definition 1). Similarly, f is an open surjection if and only if g is an open surjection.

Proof. The "only if" direction follows from Remark 13. Conversely suppose that g is an open morphism (open surjection) of locales; we wish to show that f is open (an open surjection). Let $h: \mathcal{U} \to \text{Shv}(\mathcal{U})$ be the Yoneda embedding, so that \mathcal{U} is generated by objects of the form h_U . For each $U \in \mathcal{U}$, we can identify $\text{Sub}(h_U)$ with the subset $\{V \in \mathcal{U} : V \leq U\}$, and $\text{Sub}(f^*h_U)$ with the subset $\{W \in \text{Sub}(\mathbf{1}_{\mathcal{X}}) : W \subseteq g^*U\}$. Consequently, we can identify $f_{h_U}^*$ with the map

$$\{V \in \mathcal{U} : V \le U\} \to \{W \in \operatorname{Sub}(\mathbf{1}_{\mathcal{X}}) : W \subseteq g^*U\}$$

given by restriction of g^* . Since g is open, this map admits a left adjoint $f_{h_U!}$, which is given by the restriction of $g_! : \mathcal{U} \to \operatorname{Sub}(\mathbf{1}_{\mathcal{X}})$. Consequently, f satisfies condition (1') of Proposition 14. Condition (2') follows from the projection formula for $g_!$. It follows that f is open. If g is an open surjection, then we have $f_{h_U!}(f_{h_U}^*U) = g_!g^*U = U$ by virtue of Remark 7.

Corollary 16. Let $f : \mathcal{U} \to \mathcal{V}$ be a morphism of locales. Then f is open (respectively an open surjection) if and only if the induced map $Shv(\mathcal{U}) \to Shv(\mathcal{V})$ is an open geometric morphism of topoi.

Corollary 17. Let \mathfrak{X} be any topos and let $\operatorname{Sub}(\mathbf{1}_{\mathfrak{X}})$ be its underlying locale. Then the unit map $\mathfrak{X} \to \operatorname{Shv}(\operatorname{Sub}(\mathbf{1}_{\mathfrak{X}}))$ is an open surjection of topoi.