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As we have seen, topos theory provides a simultaneous generalization of point-set topology and first-order
logic. We now take advantage of this.

Definition 1. Let C be an essentially small pretopos, which we regard as fixed throughout this lecture. Let
X be a topological space. An X-model of C is a geometric morphism of topoi from Shv(X) to Shv(€).

Let us unwind Definition 1. As we saw in Lecture 13, giving a geometric morphism from Shv(X) to Shv(€)
is equivalent to giving a functor Ox : € — Shv(X) which preserves finite limits, effective epimorphisms, and
finite coproducts. We will denote the value of Ox on an object C' € C by o%}. Here Og’; denotes a sheaf of
sets on X which we can evaluate on an open subset U C X to obtain a set O5(U). We can also take the
stalk of O at a point z € X, to obtain a set o%x =lim 0% (U). We can therefore reformulate Definition
1 as follows:

Definition 2. Let X be a topological space. An X -model of C is a functor
Ox : CxXU(X)P — Set
with the following properties:

(a) For each C' € €, the functor U — OS (U) is a sheaf of sets on X. Given an element s € 05 (U) and an
open subset V C U, we let s|y denote the image of s in OF (V).

(b) For each open set U C X, the functor C' — O (U) preserves finite limits.

(¢) Given an effective epimorphism C” — C in the pretopos €, the induced map O)C(/ — o§ is an effective
epimorphism of sheaves. That is, given a section s € (‘)?((U ) for some open set U C X, we can choose

an open covering {U,} of U such that each s|y, can be lifted to an element of Og’;/(Ua).

(d) For every finite collection of objects {C;}ic; in € having coproduct C, we can regard O as the
coproduct of O in the category Shv(X). In other words, giving an element s € O (U) is equivalent
to giving a decomposition U = I1;c;U; and a collection of elements s; € Og(Uz)

Remark 3. In the situation of Definition 2, conditions (b), (¢) and (d) can also be formulated stalkwise as
follows:

(b') For every point z € X, the functor C' — Og’;w preserves finite limits.
(') For every point z € X, the functor C' — Og’;’m carries effective epimorphisms in € to surjections of sets.
(d’) For every point x € X, the functor C' +— o%x preserves finite coproducts.

Together, these conditions assert that for each point z € X, the functor C' — Og’;’m is a model of C. We will
denote this model by Ox ;.



Roughly speaking, we can think of an X-model Ox of € as a family of models {Ox ; }zex of €, which in
some sense depend continuously on the point x € X.
The following observation will be useful for verifying condition (d) of Definition 2:

Lemma 4. Let C and D be pretopoi and let f : C — D be a left exact functor. The following conditions are
equivalent:

(1) The functor f preserves finite coproducts.
(2) The functor f preserves initial objects, and the canonical map f(1)I1f(1) — f(1111) is an isomorphism.

Proof. The implication (1) = (2) is immediate. Conversely, suppose that (2) is satisfied. To show that f
preserves finite coproducts. Since f preserves empty coproducts, it will suffice to show that for every pair
of objects C, D € €, the canonical map f(C)II f(D) — f(CII D) is an equivalence. Note that we have a
canonical map f(CII D) — f(1111). Using condition (2), we are reduced to showing that the maps

(f(C)IL f(D)) X gam) f(1) = (f(CIL D)) X ) f(1)

are isomorphisms (for each of the summand inclusions 1 — 111 1.). By symmetry, it suffices to treat the
case of the inclusion of the first summand. Using the assumption that coproducts are pullback-stable in D
and that f preserves finite limits, we can rewrite this map as

f(C X1111 1) 11 f(D X1111 1) — f((CH D) X1111 1)
Using the disjointness of coproducts in €, we can further rewrite this as

SO fO) — (O,
which is an isomorphism since f preserves initial objects. O

Remark 5 (Functoriality). Let f : X — Y be a continuous map of topological spaces and let Oy be a
Y-model of €. Then we can construct an X-model f* Oy of €, given concretely by the formula (f* Oy )¢ =
10§,

Note that, if we think of Oy as encoding the data of a geometric morphism of topoi Shv(Y) — Shv(@),
then f* Oy simply encodes the composite geometric morphism Shv(X) ER Shv(Y) — Shv(€). Note also that
the stalk of (f* Oy) at a point 2 € X is given by Oy, ¢(4)

Definition 6. We define a category Tope as follows:

e An object of Tope consists of a pair (X, Ox), where X is a topological space and Ox is an X-model
of C.

e A morphism from (X,0x) to (Y,0y) consists of a continuous map of topological spaces f: X — Y
together with a natural transformation of functors f* Oy — Ox.

Example 7. Let C = Setg, be the category of finite sets. Then, for every topological space X, there is an
essentially unique X-model of €, given by the formula O}q( = S (here S denotes the constant sheaf associated
to the finite set S). The construction (X,0x) +— X induces an equivalence from the category Tope of
Definition 6 to the category Top of topological spaces.

Example 8. Let C be the category of coherent objects of the classifying topos of commutative rings, given
by Fun({Finitely presented commutative rings}, Set). Then the datum of an X-model of € is equivalent to
the datum of a sheaf of commutative rings on €, and Tope is equivalent to the category of ringed spaces.



Proposition 9. Let X be a topological space and let Ox be an X-model of €. We let T(X;0x) : € — Set
denote the functor given by the construction

(C e @) (0%(X) € Set).
Then:

(1) The functor T'(X;Ox) preserves finite limits, and can therefore be regarded as a pro-object of C.

(2) If X is a Stone space, then the functor T'(X; Ox) also preserves effective epimorphisms, and is therefore
weakly projective as a pro-object of C.

Proof. Assertion (1) is immediate from part (b) of Definition 2. To prove (2), we note that if C’ — C' is an

effective epimorphism in €, then part (¢) of Definition 2 guarantees that the induced map o§' — o?} is an
effective epimorphism of sheaves. In particular, for every global section s € (9%; (X), we can choose an open

covering {U,} of X such that each s|y, lifts to an element s, € O)C('(Ua). If X is a Stone space, then the
open covering {U,} can be refined to an open covering by disjoint open subsets of X, in which case we can

amalgamate the sections s, to a single element s € of{(x ) lying over s. O
Note that if f: (X,0x) — (Y, Oy) is a morphism in the category Tope, then we have canonical maps
L(Y;0y)(C) = 07(Y) — (f* 0F)(X) = 05(X) = T(X;0x)(C),

depending functorially on C. This determines a natural transformation of functors from I'(Y;0Oy) to
I'(X;0x), or equivalently a morphism

[(X;0x) = I(Y;0y)
in the category Pro(C). In other words, we can regard the construction (X,0x) — I'(X;Ox) as a functor
I' : Tope — Pro(C).

Notation 10. We let Stonee denote the full subcategory of Tope spanned by those pairs (X, Ox) where X
is a Stone space. It follows from Proposition 9 that the global sections functor restricts to a functor

I : Stonee — Pro“?(C).
Theorem 11. The functor I' : Stonee — Pro™P(C) is an equivalence of categories.

Sketch. We sketch an explicit construction of an inverse to the functor I'. First, recall that there is an
essentially unique pretopos morphism ¢ : Setg, — C, given by ¢(S) = [[,.g1. Precomposition with ¢
determines a forgetful functor

seS

Pro"?(€) — Pro"?(8ets,) = Pro(Setsy,) = Stone,

where Stone is the category of Stone spaces. Explicitly, if M is an object of Pro"?(€), viewed as a functor
M : C — Set which preserves finite limits and effective epimorphisms, then this forgetful functor carries M
to a Stone space X characterized by the existence of natural bijections Homrop, (X, S) ~ M (¢(S)). For every
integer n > 0, let n denote the coproduct 1 II--- I 1 of n copies of the final object of €. We can then
restate our characterization of X as follows: for each n, we can identify M (n) with the set of all n-tuples
(U, ...,Upy) of disjoint clopen subsets Uy,...,U, C X satisfying X =U; II--- 11 U,.

Let M and X be as above, and let Uy(X) denote the Boolean algebra of clopen subsets of X. For each
object C € € and each U € Up(X),

05(U) = MATIC) X2 {(X =T, U)}.



Note that if V' C U is a smaller clopen subset, then we have a pullback square

1ICcnuHcC ——11uc

L

3 2

in €, so that O (U) can also be identified with the set M(1 I C II C) Xpmey (X —U,U -V, V)}. We
therefore have a canonical map

O)C((U):M(IHCHC) ><M(3){(X7U,U—V,V)}%M(lHIHC’)><M(3){(XfU,U—V,V)}zO)C((V).

For fixed C' € @, these maps endow o§ with the structure of a presheaf of sets on the poset Uy(X) (Exercise:
check this.)

In fact, we claim that this presheaf is actually a sheaf. Since every open covering of a Stone space can
be refined to a finite covering by disjoint clopen sets, it will suffice to prove the following:

e For V C U as above, the restriction maps 0% (U) — 0% (V) and O (U) — O$(U — V) induce a
bijection O (U) — O (V) x 0% (U — V). This follows from the fact that the diagram of sets

M@AICIC)—= MQAI1IIC)

| |

M@AICI1) —= M(1111111)

is a pullback square (since M is left exact).
e When U = (), the set O)C((U) is a singleton. We leave this as an exercise.

It follows that that for each object C' € @, the construction (U € Ug(X)) — O5(U) admits an essentially
unique extension to a sheaf of sets on X, which we will also denote by Og’;. We claim that the functor

Ox:C—=Shv(X) Cw— 0%

is an X-model of €, in the sense of Definition 2. The verification of (a) was sketched above, and condition
(b) follows from our assumption that M preserves finite limits. Since M preserves effective epimorphisms,

an effective epimorphism € — C induces a surjection O)C(’(U) — OS(U) for every clopen subset U C X,

and therefore an effective epimorphism of sheaves O)C(/ — Og;; this proves (¢). To verify condition (d), we
note that for every finite set S and each clopen subset U C X, we have

0L U) = M@QIL(S)) Xpram) (X - U, U)}
= {Clopen decompositions X = I csuf0} Xs with Xo =X - U }
= {Clopen decompositions U = Il;cgU; }.

so that ©% can be identified with the constant sheaf with value S. Condition (d) now follows from Lemma
4.

Summarizing the above discussion, from a functor M : € — Set which preserves finite limits and effective
epimorphisms, we can construct an object (X,0x) in Stonee. Note that for C € €, we have canonical
isomorphisms

T(X;0x)(C) = 0%(X)
M(1IIC) X pramy {(0, X)}
~ M(C).



since the diagram
C——11C

L

1——1111

is a pullback and M (1) is a singleton. In other words, the construction M +— (X, Ox) is right inverse to the
functor T" : Stonee — Pro™P(€) (up to isomorphism).

Consider now the composition in the other direction. Let Y be a Stone space and Oy a Y-model of C,
and suppose that we apply the above construction to the functor M = I'(Y, Oy). For every finite set S, we

have M (¢(S)) = O;SS)(Y) = S(Y), where S is the constant sheaf on Y with the value S. The value of this
sheaf on Y can be identified with the set of continuous maps Y — S, functorially in S. It follows that the
Stone space X constructed above is canonically homeomorphic to Y. Let us identify X with Y. If C is an
object of € and U is a clopen subset of X, we have canonical bijections

0%(U) = MQAIC) xyaun {(X —U,U)}
=~ O%/HC(Y) X @iu1(y) {(X-U,0)}
~ (LIOY)Y) xamyw) {(X = U,U)}.

where 1 denotes the final object of Shv(Y") and coproducts are formed in the category of sheaves; we conclude
by observing that this fiber product is canonically isomorphic to the set Og(U). O



