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March 22, 2018

As we have seen, topos theory provides a simultaneous generalization of point-set topology and first-order
logic. We now take advantage of this.

Definition 1. Let C be an essentially small pretopos, which we regard as fixed throughout this lecture. Let
X be a topological space. An X-model of C is a geometric morphism of topoi from Shv(X) to Shv(C).

Let us unwind Definition 1. As we saw in Lecture 13, giving a geometric morphism from Shv(X) to Shv(C)
is equivalent to giving a functor OX : C→ Shv(X) which preserves finite limits, effective epimorphisms, and
finite coproducts. We will denote the value of OX on an object C ∈ C by OCX . Here OCX denotes a sheaf of
sets on X which we can evaluate on an open subset U ⊆ X to obtain a set OCX(U). We can also take the
stalk of OCX at a point x ∈ X, to obtain a set OCX,x = lim−→x∈U OCX(U). We can therefore reformulate Definition

1 as follows:

Definition 2. Let X be a topological space. An X-model of C is a functor

OX : C×U(X)op → Set

with the following properties:

(a) For each C ∈ C, the functor U 7→ OCX(U) is a sheaf of sets on X. Given an element s ∈ OCX(U) and an
open subset V ⊆ U , we let s|V denote the image of s in OCX(V ).

(b) For each open set U ⊆ X, the functor C 7→ OCX(U) preserves finite limits.

(c) Given an effective epimorphism C ′ → C in the pretopos C, the induced map OC
′

X → OCX is an effective
epimorphism of sheaves. That is, given a section s ∈ OCX(U) for some open set U ⊆ X, we can choose

an open covering {Uα} of U such that each s|Uα can be lifted to an element of OC
′

X (Uα).

(d) For every finite collection of objects {Ci}i∈I in C having coproduct C, we can regard OCX as the
coproduct of OCiX in the category Shv(X). In other words, giving an element s ∈ OCX(U) is equivalent

to giving a decomposition U = qi∈IUi and a collection of elements si ∈ OCiX (Ui).

Remark 3. In the situation of Definition 2, conditions (b), (c) and (d) can also be formulated stalkwise as
follows:

(b′) For every point x ∈ X, the functor C 7→ OCX,x preserves finite limits.

(c′) For every point x ∈ X, the functor C 7→ OCX,x carries effective epimorphisms in C to surjections of sets.

(d′) For every point x ∈ X, the functor C 7→ OCX,x preserves finite coproducts.

Together, these conditions assert that for each point x ∈ X, the functor C 7→ OCX,x is a model of C. We will
denote this model by OX,x.
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Roughly speaking, we can think of an X-model OX of C as a family of models {OX,x}x∈X of C, which in
some sense depend continuously on the point x ∈ X.

The following observation will be useful for verifying condition (d) of Definition 2:

Lemma 4. Let C and D be pretopoi and let f : C→ D be a left exact functor. The following conditions are
equivalent:

(1) The functor f preserves finite coproducts.

(2) The functor f preserves initial objects, and the canonical map f(1)qf(1)→ f(1q1) is an isomorphism.

Proof. The implication (1) ⇒ (2) is immediate. Conversely, suppose that (2) is satisfied. To show that f
preserves finite coproducts. Since f preserves empty coproducts, it will suffice to show that for every pair
of objects C,D ∈ C, the canonical map f(C) q f(D) → f(C q D) is an equivalence. Note that we have a
canonical map f(C qD)→ f(1q 1). Using condition (2), we are reduced to showing that the maps

(f(C)q f(D))×f(1q1) f(1)→ (f(C qD))×f(1q1) f(1)

are isomorphisms (for each of the summand inclusions 1 → 1 q 1.). By symmetry, it suffices to treat the
case of the inclusion of the first summand. Using the assumption that coproducts are pullback-stable in D

and that f preserves finite limits, we can rewrite this map as

f(C ×1q1 1)q f(D ×1q1 1)→ f((C qD)×1q1 1).

Using the disjointness of coproducts in C, we can further rewrite this as

f(C)q f(∅)→ f(C),

which is an isomorphism since f preserves initial objects.

Remark 5 (Functoriality). Let f : X → Y be a continuous map of topological spaces and let OY be a
Y -model of C. Then we can construct an X-model f∗ OY of C, given concretely by the formula (f∗ OY )C =
f∗ OCY .

Note that, if we think of OY as encoding the data of a geometric morphism of topoi Shv(Y ) → Shv(C),

then f∗ OY simply encodes the composite geometric morphism Shv(X)
f−→ Shv(Y )→ Shv(C). Note also that

the stalk of (f∗ OY ) at a point x ∈ X is given by OY,f(x)

Definition 6. We define a category TopC as follows:

• An object of TopC consists of a pair (X,OX), where X is a topological space and OX is an X-model
of C.

• A morphism from (X,OX) to (Y,OY ) consists of a continuous map of topological spaces f : X → Y
together with a natural transformation of functors f∗ OY → OX .

Example 7. Let C = Setfin be the category of finite sets. Then, for every topological space X, there is an
essentially unique X-model of C, given by the formula OSX = S (here S denotes the constant sheaf associated
to the finite set S). The construction (X,OX) 7→ X induces an equivalence from the category TopC of
Definition 6 to the category Top of topological spaces.

Example 8. Let C be the category of coherent objects of the classifying topos of commutative rings, given
by Fun({Finitely presented commutative rings}, Set). Then the datum of an X-model of C is equivalent to
the datum of a sheaf of commutative rings on C, and TopC is equivalent to the category of ringed spaces.
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Proposition 9. Let X be a topological space and let OX be an X-model of C. We let Γ(X;OX) : C → Set
denote the functor given by the construction

(C ∈ C) 7→ (OCX(X) ∈ Set).

Then:

(1) The functor Γ(X;OX) preserves finite limits, and can therefore be regarded as a pro-object of C.

(2) If X is a Stone space, then the functor Γ(X;OX) also preserves effective epimorphisms, and is therefore
weakly projective as a pro-object of C.

Proof. Assertion (1) is immediate from part (b) of Definition 2. To prove (2), we note that if C ′ → C is an

effective epimorphism in C, then part (c) of Definition 2 guarantees that the induced map OC
′

X → OCX is an
effective epimorphism of sheaves. In particular, for every global section s ∈ OCX(X), we can choose an open

covering {Uα} of X such that each s|Uα lifts to an element s̃α ∈ OC
′

X (Uα). If X is a Stone space, then the
open covering {Uα} can be refined to an open covering by disjoint open subsets of X, in which case we can

amalgamate the sections s̃α to a single element s̃ ∈ OC
′

X (X) lying over s.

Note that if f : (X,OX)→ (Y,OY ) is a morphism in the category TopC, then we have canonical maps

Γ(Y ;OY )(C) = OCY (Y )→ (f∗ OCY )(X)→ OCX(X) = Γ(X;OX)(C),

depending functorially on C. This determines a natural transformation of functors from Γ(Y ;OY ) to
Γ(X;OX), or equivalently a morphism

Γ(X;OX)→ Γ(Y ;OY )

in the category Pro(C). In other words, we can regard the construction (X,OX) 7→ Γ(X;OX) as a functor

Γ : TopC → Pro(C).

Notation 10. We let StoneC denote the full subcategory of TopC spanned by those pairs (X,OX) where X
is a Stone space. It follows from Proposition 9 that the global sections functor restricts to a functor

Γ : StoneC → Prowp(C).

Theorem 11. The functor Γ : StoneC → Prowp(C) is an equivalence of categories.

Sketch. We sketch an explicit construction of an inverse to the functor Γ. First, recall that there is an
essentially unique pretopos morphism ι : Setfin → C, given by ι(S) =

∐
s∈S 1. Precomposition with ι

determines a forgetful functor

Prowp(C)→ Prowp(Setfin) = Pro(Setfin) = Stone,

where Stone is the category of Stone spaces. Explicitly, if M is an object of Prowp(C), viewed as a functor
M : C → Set which preserves finite limits and effective epimorphisms, then this forgetful functor carries M
to a Stone space X characterized by the existence of natural bijections HomTop(X,S) 'M(ι(S)). For every
integer n ≥ 0, let n denote the coproduct 1 q · · · q 1 of n copies of the final object of C. We can then
restate our characterization of X as follows: for each n, we can identify M(n) with the set of all n-tuples
(U1, . . . , Un) of disjoint clopen subsets U1, . . . , Un ⊆ X satisfying X = U1 q · · · q Un.

Let M and X be as above, and let U0(X) denote the Boolean algebra of clopen subsets of X. For each
object C ∈ C and each U ∈ U0(X),

OCX(U) = M(1q C)×M(2) {(X − U,U)}.
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Note that if V ⊆ U is a smaller clopen subset, then we have a pullback square

1q C q C //

��

1q C

��
3 // 2

in C, so that OCX(U) can also be identified with the set M(1 q C q C) ×M(3) {(X − U,U − V, V )}. We
therefore have a canonical map

OCX(U) = M(1qC qC)×M(3) {(X −U,U − V, V )} →M(1q 1qC)×M(3) {(X −U,U − V, V )} ' OCX(V ).

For fixed C ∈ C, these maps endow OCX with the structure of a presheaf of sets on the poset U0(X) (Exercise:
check this.)

In fact, we claim that this presheaf is actually a sheaf. Since every open covering of a Stone space can
be refined to a finite covering by disjoint clopen sets, it will suffice to prove the following:

• For V ⊆ U as above, the restriction maps OCX(U) → OCX(V ) and OCX(U) → OCX(U − V ) induce a
bijection OCX(U)→ OCX(V )× OCX(U − V ). This follows from the fact that the diagram of sets

M(1q C q C) //

��

M(1q 1q C)

��
M(1q C q 1) // M(1q 1q 1)

is a pullback square (since M is left exact).

• When U = ∅, the set OCX(U) is a singleton. We leave this as an exercise.

It follows that that for each object C ∈ C, the construction (U ∈ U0(X)) 7→ OCX(U) admits an essentially
unique extension to a sheaf of sets on X, which we will also denote by OCX . We claim that the functor

OX : C→ Shv(X) C 7→ OCX

is an X-model of C, in the sense of Definition 2. The verification of (a) was sketched above, and condition
(b) follows from our assumption that M preserves finite limits. Since M preserves effective epimorphisms,

an effective epimorphism C ′ → C induces a surjection OC
′

X (U) → OCX(U) for every clopen subset U ⊆ X,

and therefore an effective epimorphism of sheaves OC
′

X → OCX ; this proves (c). To verify condition (d), we
note that for every finite set S and each clopen subset U ⊆ X, we have

OιSX (U) = M(1q ι(S))×M(1q1) {(X − U,U)}
= {Clopen decompositions X = qs∈S∪{0}Xs with X0 = X − U }
= {Clopen decompositions U = qs∈SUs }.

so that OιSX can be identified with the constant sheaf with value S. Condition (d) now follows from Lemma
4.

Summarizing the above discussion, from a functor M : C→ Set which preserves finite limits and effective
epimorphisms, we can construct an object (X,OX) in StoneC. Note that for C ∈ C, we have canonical
isomorphisms

Γ(X;OX)(C) = OCX(X)

= M(1q C)×M(1q1) {(∅, X)}
' M(C).
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since the diagram
C //

��

1q C

��
1 // 1q 1

is a pullback and M(1) is a singleton. In other words, the construction M 7→ (X,OX) is right inverse to the
functor Γ : StoneC → Prowp(C) (up to isomorphism).

Consider now the composition in the other direction. Let Y be a Stone space and OY a Y -model of C,
and suppose that we apply the above construction to the functor M = Γ(Y,OY ). For every finite set S, we

have M(ι(S)) = O
ι(S)
Y (Y ) = S(Y ), where S is the constant sheaf on Y with the value S. The value of this

sheaf on Y can be identified with the set of continuous maps Y → S, functorially in S. It follows that the
Stone space X constructed above is canonically homeomorphic to Y . Let us identify X with Y . If C is an
object of C and U is a clopen subset of X, we have canonical bijections

OCX(U) = M(1q C)×M(1q1) {(X − U,U)}
' O1qC

Y (Y )×O1q1
Y (Y ) {(X − U,U)}

' (1q OCY )(Y )×(1q1)(Y ) {(X − U,U)}.

where 1 denotes the final object of Shv(Y ) and coproducts are formed in the category of sheaves; we conclude
by observing that this fiber product is canonically isomorphic to the set OCY (U).
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