Lecture 16: Enumerations

March 2, 2018

The contents of the course up to this point can be roughly summarized in the following diagram:

Our ultimate goal in this course is to try to use the right side of this diagram to study the left side. To every first-order theory T, we can associate a classifying topos $\operatorname{Shv}(\operatorname{Syn}(T)) \simeq \operatorname{Shv}(\operatorname{Syn}_0(T))$. Our strategy will be to analyze T by comparing its classifying topos with localic topoi.

Question 1. Given an arbitrary topos \mathcal{X} , how well can \mathcal{X} be approximated by a localic topos?

Our more immediate goal in this course is to prove the following result of Joyal and Tierney, which gives a precise answer to Question 1:

Theorem 2 (Joyal-Tierney). Let X be a topos. Then there exists a localic topos U and a geometric morphism $U \to X$ which is an effective epimorphism in the 2-categorical sense: that is, X can be identified with the colimit of the diagram

$$\mathcal{U} \times_{\mathcal{X}} \mathcal{U} \times_{\mathcal{X}} \mathcal{U} \Longrightarrow \mathcal{U} \times_{\mathcal{X}} \mathcal{U} \Longrightarrow \mathcal{U}$$
,

formed in the 2-category of topoi and geometric morphisms. Moreover, every topos appearing in this diagram is localic.

We will give a more precise formulation (and proof) of Theorem 2 slowly over the course of the next several lectures. Let us begin by outlining our strategy. Let \mathcal{X} be a topos. If \mathcal{X} is localic, then there is nothing to do (we can simply take $\mathcal{U} = \mathcal{X}$). Otherwise, there exists some object $X \in \mathcal{X}$ which cannot be covered by subobjects of the final object of \mathcal{X} . Let us proceed immediately to the "hardest" case, where we know nothing at all about the object X.

Definition 3. Let Set_{fin} denote the category of finite sets, and let $\mathfrak{X}_{Set} = Fun(Set_{fin}, Set)$. We will refer to \mathfrak{X}_{Set} as the *classifying topos of sets*.

Remark 4. We can also describe \mathcal{X}_{Set} as the category of functors from Set to Set which preserve filtered colimits.

The topos $\mathfrak{X}_{\mathsf{Set}}$ contains a distinguished object X_0 , given by the inclusion functor $\mathsf{Set}_{\mathsf{fin}} \hookrightarrow \mathsf{Set}$ (under the alternate description of Remark 4, this corresponds to the identity functor id : $\mathsf{Set} \to \mathsf{Set}$).

Proposition 5. For any topos X, evaluation on the object $X_0 \in X_{Set}$ induces an equivalence of categories

$$\operatorname{Fun}^*(\mathfrak{X}_{\operatorname{Set}},\mathfrak{X}) \to \mathfrak{X}$$
.

In other words, we can identify geometric morphisms from X to X_{Set} with objects of the topos X.

Remark 6. We can paraphrase Proposition 5 as follows: the classifying topos $\mathfrak{X}_{\text{Set}}$ is freely generated, as a topos, by the object X_0 .

Proof of Proposition 5. Note that $\mathfrak{X}_{\text{Set}}$ can be described as the topos of presheaves on the category $\text{Set}_{\text{fin}}^{\text{op}}$. Using Lecture 12, we deduce that composition with the Yoneda embedding induces an equivalence of categories

$$\operatorname{Fun}^*(\mathfrak{X}_{\operatorname{Set}},\mathfrak{X}) \simeq \operatorname{Fun}^{\operatorname{lex}}(\operatorname{Set}_{\operatorname{fin}}^{\operatorname{op}},\mathfrak{X}),$$

where $\operatorname{Fun}^{\operatorname{lex}}(\operatorname{Set}^{\operatorname{op}}_{\operatorname{fin}}, \mathfrak{X})$ denotes the category of functors $F: \operatorname{Set}^{\operatorname{op}}_{\operatorname{fin}} \to \mathfrak{X}$ which preserve finite limits.

For every finite set S, we can write S as a coproduct $\coprod_{s \in S} \{s\}$ in the category Set_{fin} , or equivalently as a product of singletons in the category $\text{Set}_{\text{fin}}^{\text{op}}$. It follows that for any functor F as above, we have canonical isomorphisms $F(S) = \prod_{s \in S} F(\{s\}) \simeq F(*)^S$, so that F is determined by its value on the one-point set *. Conversely, for any $X \in \mathcal{X}$, the construction $S \mapsto X^S$ determines a functor $\text{Set}_{\text{fin}}^{\text{op}} \to \mathcal{X}$ preserving finite limits. It follows that evaluation at * induces an equivalence of categories

$$\operatorname{Fun}^{\operatorname{lex}}(\operatorname{Set}^{\operatorname{op}}_{\operatorname{fin}},\mathfrak{X}) \to \mathfrak{X}$$
.

Note that the composite equivalence

$$\operatorname{Fun}^*(\mathfrak{X}_{\operatorname{Set}},\mathfrak{X}) \simeq \operatorname{Fun}^{\operatorname{lex}}(\operatorname{Set}^{\operatorname{op}}_{\operatorname{fin}},\mathfrak{X}) \simeq \mathfrak{X}$$

is given by evaluation on the representable presheaf $h_* \in \mathfrak{X}_{\text{Set}} = \text{Fun}(\text{Set}_{\text{fin}}, \text{Set})$, which is the object X_0 . \square

The topos $\mathcal{X}_{\mathrm{Set}}$ is not localic. In some sense, it is as far from localic as possible: note that if there were to exist a covering $\{U_i \to X_0\}$ of the object $X_0 \in \mathcal{X}_{\mathrm{Set}}$ by subobjects of the final object in $\mathcal{X}_{\mathrm{Set}}$, then we would be able to find such a covering for any object X of any topos \mathcal{X} , since Proposition 5 supplies a geometric morphism $f: \mathcal{X} \to \mathcal{X}_{\mathrm{Set}}$ satisfying $X \simeq f^*X_0$.

Remark 7. Let \mathcal{X} be a topos containing an object X, so that we can write $X = \pi^* X_0$ for an essentially unique geometric morphism π from $\mathcal{X} \to \mathcal{X}_{Set}$. Then the right adjoint π_* of π^* is given by the formula

$$\pi_*(Y)(S) \simeq \operatorname{Hom}_{\mathfrak{X}_{\operatorname{Set}}}(h_S, \pi_*(Y))$$

$$\simeq \operatorname{Hom}_{\mathfrak{X}_{\operatorname{Set}}}(\prod_{s \in S} X_0, \pi_*(Y))$$

$$\simeq \operatorname{Hom}_{\mathfrak{X}}(\pi^* \prod_{s \in S} X_0, Y)$$

$$\simeq \operatorname{Hom}_{\mathfrak{X}}(\prod_{s \in S} \pi^* X_0, Y)$$

$$\simeq \operatorname{Hom}_{\mathfrak{X}}(X^S, Y)$$

for $Y \in \mathcal{X}$ and $S \in Set_{fin}$.

It will be convenient to introduce a slight variant of Definition 3.

Definition 8. Let us regard the category $\operatorname{Set}^{\operatorname{op}}_{\operatorname{fin}}$ as equipped with a Grothendieck topology, where a collection of maps of finite sets $\{S \to T_i\}_{i \in I}$ is a covering if $S \to T_i$ is injective for some i. We will denote the topos $\operatorname{Shv}(\operatorname{Set}^{\operatorname{op}}_{\operatorname{fin}}) \subseteq \mathfrak{X}_{\operatorname{Set}}$ by $\mathfrak{X}_{\operatorname{Set}\neq\emptyset}$, and refer to it as the *classifying topos for nonempty sets*.

Exercise 9. Show that a functor $F : \operatorname{Set}_{\operatorname{fin}} \to \operatorname{Set}$ is a sheaf for the topology of Definition 8 if and only if the diagram of sets

$$F(\emptyset) \to F(*) \Longrightarrow F(* \coprod *)$$

is an equalizer. In particular, the object $X_0 \in \mathfrak{X}_{\operatorname{Set}}$ belongs to the subcategory $\mathfrak{X}_{\operatorname{Set}^{\neq\emptyset}}$.

Exercise 10. Let $\operatorname{Set}_{\operatorname{fin}}^{\neq\emptyset}$ denote the category of nonempty finite sets. Show that composition with the inclusion functor $\operatorname{Set}_{\operatorname{fin}}^{\neq\emptyset}$ induces an equivalence of categories

$$\mathfrak{X}_{\operatorname{Set}^{\neq\emptyset}}\subseteq\operatorname{Fun}(\operatorname{Set}_{\operatorname{fin}},\operatorname{Set})\to\operatorname{Fun}(\operatorname{Set}_{\operatorname{fin}}^{\neq\emptyset},\operatorname{Set}).$$

We have the following analogue of Proposition 5:

Proposition 11. For any topos \mathfrak{X} , evaluation on the object $X_0 \in \mathfrak{X}_{\mathtt{Set}^{\neq\emptyset}}$ induces a fully faithful embedding

$$\operatorname{Fun}^*(\mathfrak{X}_{\operatorname{Set}^{\neq\emptyset}},\mathfrak{X})\to\mathfrak{X}$$

whose essential image consists of those objects $X \in \mathcal{X}$ for which the map $X \to \mathbf{1}$ is an effective epimorphism in \mathcal{X} .

Proof. Using Lecture 12, we deduce that composition with the Yoneda embedding induces a fully faithful embedding

$$\operatorname{Fun}^*(\mathfrak{X}_{\operatorname{Set}},\mathfrak{X}) \to \operatorname{Fun}(\operatorname{Set}^{\operatorname{op}}_{\operatorname{fin}},\mathfrak{X})$$

whose essential image is spanned by those functors $F: \operatorname{Set}_{\operatorname{fin}}^{\operatorname{op}} \to \mathfrak{X}$ which preserve finite limits and coverings. The first condition guarantees that we can write $F(S) = X^S$ for some object $X \in \mathfrak{X}$ (as in the proof of Proposition 5). In this case, preservation of coverings translates to the condition that for any injective map $S \to T$ of finite set, the induced map $X^T \to X^S$ is an effective epimorphism of sets. If $S \neq \emptyset$, then this is automatic (since the map $X^T \to X^S$ admits a section). Consequently, preservation of coverings translates to the condition that the projection map $X^T \to \mathbf{1}$ is an effective epimorphism in \mathfrak{X} . We conclude by observing that if this condition is satisfied when T is a singleton, then it is satisfied for all T (since the collection of effective epimorphisms in \mathfrak{X} is closed under products).

Construction 12. Let Equiv(\mathbf{Z}) denote the set of all equivalence relations on the set \mathbf{Z} of integers. We will regard Equiv(\mathbf{Z}) as a topological space, where the collection of subsets

$$U_{i,j} = \{ E \in \text{Equiv}(\mathbf{Z}) : iEj \}$$

forms a sub-basis of open sets. (In other words, we equip Equiv(\mathbf{Z}) with the coarsest topology for which each $U_{i,j}$ is an open set).

Let \mathscr{F} denote the sheaf of sets on Equiv(\mathbf{Z}) whose stalk at a point $E \in \text{Equiv}(\mathbf{Z})$ is given by the quotient \mathbf{Z}/E . More formally, we can describe \mathscr{F} as the quotient \mathbf{Z}/\mathscr{R} , where \mathbf{Z} denotes the constant sheaf with value \mathbf{Z} , and $\mathscr{R} \subseteq \mathbf{Z} \times \mathbf{Z}$ is the equivalence relation given by $\coprod_{i,j} \mathbf{Z} : h_{U_{i,j}}$.

Note that the canonical map $\mathscr{F} \to \mathbf{1}$ is an effective epimorphism in the topos Shv(Equiv(\mathbf{Z})) (by construction, it comes with many sections). Applying Proposition 11, we see that there is an essentially unique geometric morphism

$$\varphi: \operatorname{Shv}(\operatorname{Equiv}(\mathbf{Z})) \to \mathfrak{X}_{\operatorname{Set}^{\neq\emptyset}}$$

satisfying $\varphi^* X_0 = \mathscr{F}$. This gives a localic "approximation" to the topos $\mathfrak{X}_{\text{Set}^{\neq\emptyset}}$.

Construction 13. Let \mathcal{X} be a topos and let $X \in \mathcal{X}$ be an object for which $X \to \mathbf{1}$ is an effective epimorphism, so we can write $X = \varphi^* X_0$ for an essentially unique geometric morphism $\psi : \mathcal{X} \to \mathcal{X}_{\mathtt{Set} \neq \emptyset}$. We let $\mathtt{Enum}(X)$ denote the fiber product $\mathcal{X} \times_{\mathcal{X}_{\mathtt{Set} \neq \emptyset}} \mathtt{Shv}(\mathtt{Equiv}(\mathbf{Z}))$, formed in the 2-category of topoi. We will refer to $\mathtt{Enum}(X)$ as the topos of enumerations of X.

Remark 14. In the situation of Construction 13, we have a commutative diagram of topoi

$$\begin{array}{ccc} \operatorname{Enum}(X) & \xrightarrow{\pi} & \mathfrak{X} & , \\ & & \downarrow^{\psi'} & & \downarrow^{\psi} & \\ \operatorname{Shv}(\operatorname{Equiv}(\mathbf{Z})) & \xrightarrow{\varphi} & \mathfrak{X}_{\operatorname{Set}^{\neq\emptyset}} & \end{array}$$

hence canonical isomorphisms

$$\pi^* X \simeq \pi^* \psi^* X_0 \simeq \psi'^* \varphi^* X_0 \simeq \psi'^* \mathscr{F} \simeq \psi'^* (\mathbf{Z}) / \psi'^* \mathscr{R}.$$

It follows that, after pulling back along the geometric morphism π' , the object X can be equipped with an enumeration: that is, a cover by countably many copies of the final object.

The proof of Theorem 2 will proceed via Construction 13. Given a topos \mathcal{X} , we can choose a set of generators $\{X_i\}_{i\in I}$. Enlarging this set if necessary (say by adding the final object 1), we can assume that the coproduct $X = \coprod_{i\in I} X_i$ has the property that the projection $X \to \mathbf{1}$ is an effective epimorphism. In this case, we will show (following Joyal and Tierney) that the projection map

$$\pi: \operatorname{Enum}(X) \to \mathfrak{X}$$

satisfies the requirements of Theorem 2.

Warning 15. Recall that a *point* of a topos X is a geometric morphism to X from the topos Set of sets. Then:

- Points of the topos $\mathfrak{X}_{\text{Set}}$ can be identified with sets (Proposition 5), and points of the topos $\mathfrak{X}_{\text{Set}}\neq\emptyset$ can be identified with nonempty sets (Proposition 11).
- One can show that the space Equiv(\mathbf{Z}) is sober, so that points of the topos Shv(Equiv(\mathbf{Z})) can be identified with points of Equiv(\mathbf{Z}): that is, with equivalence relations E on \mathbf{Z} . Put differently, we can think of a point of Shv(Equiv(\mathbf{Z})) as a set S equipped with a surjection $\mathbf{Z} \to S$.

Suppose now that we are in the situation of Construction 13 and that we are given a point $x : \text{Set} \to \mathcal{X}$. Then lifting x to a point of $\text{Enum}(X) = \mathcal{X} \times_{\mathcal{X}_{\text{Set}} \neq \emptyset} \text{Shv}(\text{Equiv}(\mathbf{Z}))$ is equivalent to choosing a surjection $\mathbf{Z} \to x^*(X)$.

It follows that Construction 13 can easily produce examples of topoi that have no points at all. For example, we could take $\mathcal{X} = \text{Set}$ to be the topos of sets, and $X \in \mathcal{X}$ to be any uncountable set. In this case, the enumeration topos Enum(X) will not have any points (because there are no surjections from \mathbf{Z} to X). Nevertheless, we will see that the projection map $\pi : \text{Enum}(X) \to \mathcal{X}$ still satisfies the requirements of Theorem 2. (In particular, Enum(X) is a localic topos whose associated locale is non-spatial.)