Lecture 16: Enumerations

March 2, 2018

The contents of the course up to this point can be roughly summarized in the following diagram:

{(Typed) First-Order Theories} {(Sober) Topological Spaces}
~ | T Syn(T) ~ | XU
{(Small) Boolian Pretopoi} {Spatial %ocales}
{(Small) Pretopoi} {Locales}
~ | e—Shv(€) ~ | X>Shv(X)

{Coherent Topoi}————— {Topoi} <———{Localic Topoi}

Our ultimate goal in this course is to try to use the right side of this diagram to study the left side. To
every first-order theory T, we can associate a classifying topos Shv(Syn(T)) ~ Shv(Syny(7')). Our strategy
will be to analyze T by comparing its classifying topos with localic topoi.

Question 1. Given an arbitrary topos X, how well can X be approximated by a localic topos?

Our more immediate goal in this course is to prove the following result of Joyal and Tierney, which gives
a precise answer to Question 1:

Theorem 2 (Joyal-Tierney). Let X be a topos. Then there exists a localic topos U and a geometric morphism
U — X which is an effective epimorphism in the 2-categorical sense: that is, X can be identified with the
colimit of the diagram

u><xu><xu§u><xu3u7

formed in the 2-category of topoi and geometric morphisms. Moreover, every topos appearing in this diagram
is localic.

We will give a more precise formulation (and proof) of Theorem 2 slowly over the course of the next
several lectures. Let us begin by outlining our strategy. Let X be a topos. If X is localic, then there is
nothing to do (we can simply take U = X). Otherwise, there exists some object X € X which cannot be
covered by subobjects of the final object of X. Let us proceed immediately to the “hardest” case, where we
know nothing at all about the object X.

Definition 3. Let Sets, denote the category of finite sets, and let Xgot = Fun(Setsy, Set). We will refer to
Xset as the classifying topos of sets.

Remark 4. We can also describe Xgot as the category of functors from Set to Set which preserve filtered
colimits.



The topos Xget contains a distinguished object X, given by the inclusion functor Setg, < Set (under
the alternate description of Remark 4, this corresponds to the identity functor id : Set — Set).

Proposition 5. For any topos X, evaluation on the object Xy € Xsgey induces an equivalence of categories
Fun™(Xget, X) — X.
In other words, we can identify geometric morphisms from X to Xget with objects of the topos X.

Remark 6. We can paraphrase Proposition 5 as follows: the classifying topos Xget is freely generated, as a
topos, by the object Xj.

Proof of Proposition 5. Note that Xse; can be described as the topos of presheaves on the category Setgh.
Using Lecture 12, we deduce that composition with the Yoneda embedding induces an equivalence of cate-
gories

Fun®(Xset, X) =~ Fun'™(Setg?, X),

where Fun'®(Setg?, X) denotes the category of functors F : 8et?® — X which preserve finite limits.

For every finite set S, we can write S as a coproduct Hse o{s} in the category Setgy, or equivalently as
a product of singletons in the category Setg>. It follows that for any functor F as above, we have canonical
isomorphisms F(S) =[] . F({s}) ~ F(x)”, so that F is determined by its value on the one-point set .
Conversely, for any X € X, the construction S — X* determines a functor Setg? — X preserving finite

limits. It follows that evaluation at * induces an equivalence of categories
1
Fun*(8etgh, X) — X.
Note that the composite equivalence
Fun*(Xset, X) =~ Fun'®(Setg?, X) ~ X
is given by evaluation on the representable presheaf h, € Xgor = Fun(Setgy, Set), which is the object Xo. O

The topos Xset is not localic. In some sense, it is as far from localic as possible: note that if there were to
exist a covering {U; — X} of the object Xo € Xger by subobjects of the final object in Xget, then we would
be able to find such a covering for any object X of any topos X, since Proposition 5 supplies a geometric
morphism f: X — Xge satisfying X ~ f*X,.

Remark 7. Let X be a topos containing an object X, so that we can write X = 7* X, for an essentially
unique geometric morphism 7 from X — Xget. Then the right adjoint 7, of 7* is given by the formula

T (Y)(S) =~ Homuxy, (hs,m(Y))
= HomxSet(H‘X()?ﬂ—*(Y))

ses
~ Homy(n* [ Xo.Y)
ses
~ Homy (][ 7 Xo,Y)
ses
~ Homy(X*,Y)

for Y € X and S € Setgn.
It will be convenient to introduce a slight variant of Definition 3.

Definition 8. Let us regard the category Setg> as equipped with a Grothendieck topology, where a collection
of maps of finite sets {S — T;}icr is a covering if S — T; is injective for some i. We will denote the topos
Shv(8etir) C Xset by Xgo#0, and refer to it as the classifying topos for nonempty sets.



Exercise 9. Show that a functor F' : Setg, — Set is a sheaf for the topology of Definition 8 if and only if
the diagram of sets
F0) = F(x) = F(x )

is an equalizer. In particular, the object Xy € Xse belongs to the subcategory Xg  o0.

Exercise 10. Let Setfﬁ? denote the category of nonempty finite sets. Show that composition with the
inclusion functor Set?i? induces an equivalence of categories

Xgor#0 C Fun(Setqn, Set) — Fun(Setfr?, Set).

We have the following analogue of Proposition 5:

Proposition 11. For any topos X, evaluation on the object Xo € Xgy 0 induces a fully faithful embedding
Fun®(Xg#0,X) — X

whose essential image consists of those objects X € X for which the map X — 1 is an effective epimorphism

mn X.

Proof. Using Lecture 12, we deduce that composition with the Yoneda embedding induces a fully faithful
embedding
Fun™(Xget, X) — Fun(Setg”, X)

whose essential image is spanned by those functors F : Setg) — X which preserve finite limits and coverings.
The first condition guarantees that we can write F(S) = X for some object X € X (as in the proof of
Proposition 5). In this case, preservation of coverings translates to the condition that for any injective map
S — T of finite set, the induced map X7 — X9 is an effective epimorphism of sets. If S # (), then this is
automatic (since the map X7 — X admits a section). Consequently, preservation of coverings translates to
the condition that the projection map X7 — 1 is an effective epimorphism in X. We conclude by observing
that if this condition is satisfied when T is a singleton, then it is satisfied for all T (since the collection of
effective epimorphisms in X is closed under products). O

Construction 12. Let Equiv(Z) denote the set of all equivalence relations on the set Z of integers. We will
regard Equiv(Z) as a topological space, where the collection of subsets

Ui; ={F € Equiv(Z) : iEj}

forms a sub-basis of open sets. (In other words, we equip Equiv(Z) with the coarsest topology for which
each U; ; is an open set).

Let .% denote the sheaf of sets on Equiv(Z) whose stalk at a point E € Equiv(Z) is given by the quotient
Z/E. More formally, we can describe # as the quotient Z/ %, where Z denotes the constant sheaf with
value Z, and # C Z x Z is the equivalence relation given by Il; jez : hUw.

Note that the canonical map # — 1 is an effective epimorphism in the topos Shv(Equiv(Z)) (by con-
struction, it comes with many sections). Applying Proposition 11, we see that there is an essentially unique

geometric morphism
¢ : Shv(Equiv(Z)) — Xg 0

satisfying ¢* Xo = .#. This gives a localic “approximation” to the topos Xg 0.
Construction 13. Let X be a topos and let X € X be an object for which X — 1 is an effective epimorphism,
so we can write X = ¢*Xj for an essentially unique geometric morphism ¢ : X — Xg #0. We let Enum(X)

denote the fiber product X xx_ _, Shv(Equiv(Z)), formed in the 2-category of topoi. We will refer to
Enum(X) as the topos of enumerations of X.



Remark 14. In the situation of Construction 13, we have a commutative diagram of topoi

Enum(X) —= X

ook

Shv(Equiv(Z)) s Xgo#0
hence canonical isomorphisms
X " Xo = 0" Xo = 4 F N (Z) [0 B

It follows that, after pulling back along the geometric morphism 7/, the object X can be equipped with an
enumeration: that is, a cover by countably many copies of the final object.

The proof of Theorem 2 will proceed via Construction 13. Given a topos X, we can choose a set of
generators {X;}icr. Enlarging this set if necessary (say by adding the final object 1), we can assume that
the coproduct X = [[,.; X; has the property that the projection X — 1 is an effective epimorphism. In
this case, we will show (following Joyal and Tierney) that the projection map

7 Enum(X) - X
satisfies the requirements of Theorem 2.

Warning 15. Recall that a point of a topos X is a geometric morphism to X from the topos Set of sets.
Then:

e Points of the topos Xse, can be identified with sets (Proposition 5), and points of the topos Xg #0 can
be identified with nonempty sets (Proposition 11).

e One can show that the space Equiv(Z) is sober, so that points of the topos Shv(Equiv(Z)) can be
identified with points of Equiv(Z): that is, with equivalence relations E on Z. Put differently, we can
think of a point of Shv(Equiv(Z)) as a set S equipped with a surjection Z — S.

Suppose now that we are in the situation of Construction 13 and that we are given a point z : Set — X.
Then lifting z to a point of Enum(X) = X xx___, Shv(Equiv(Z)) is equivalent to choosing a surjection
Z — z*(X).

It follows that Construction 13 can easily produce examples of topoi that have no points at all. For
example, we could take X = Set to be the topos of sets, and X € X to be any uncountable set. In this
case, the enumeration topos Enum(X') will not have any points (because there are no surjections from Z to
X). Nevertheless, we will see that the projection map 7 : Enum(X) — X still satisfies the requirements of
Theorem 2. (In particular, Enum(X) is a localic topos whose associated locale is non-spatial.)



