
Lecture 14: Locales and Topoi

March 5, 2018

Recall that, if X is an object of a coherent category C, then the poset Sub(X) is a distributive lattice. If
C is a topos, we can say more.

Definition 1. A locale is a poset U with the following properties:

(a) Every subset S ⊆ U has a least upper bound
∨
S.

It follows from (a) that every subset S ⊆ U also has a greatest lower bound
∧
S, given by the least upper

bound of the set {U ∈ U : (∀V ∈ S)U ≤ V } of all lower bounds for S. In particular, every pair of elements
U, V ∈ U have a meet U ∧ V .

(b) For each element V ∈ U and every set of elements {Uα}, we have a distributive law

(
∨
α

Uα) ∧ V =
∨
α

(Uα ∧ V ).

Remark 2. Every locale is a distributive lattice.

Exercise 3. Let U be a poset satisfying condition (a) of Definition 1. Show that U is a locale if and only
if it is a Heyting algebra: that is, if and only if for every pair of elements U, V ∈ U, there is an element
(U ⇒ V ) ∈ U such that W ≤ (U ⇒ V ) if and only if U ∧W ≤ V .

Example 4. Let B be a complete Boolean algebra (that is, a Boolean algebra satisfying condition (a) of
Definition 1). Then B is a locale.

Example 5. Let X be a topological space and let U(X) be the collection of open subsets of X, partially
ordered with respect to inclusion. Then U(X) is a locale. Moreover, the join

∨
Uα of a collection of elements

Uα ∈ U(X) coincides with the set-theoretic union
⋃
Uα, and the meet of a pair U, V ∈ U(X) is given by the

set-theoretic intersection U ∩ V .
Beware that the meet of an infinite set of elements Uα ∈ U(X) usually does not coincide with the

intersection
⋂
Uα, because the intersection

⋂
Uα need not be open; instead,

∧
Uα is given by the interior of⋂

Uα. In particular, we generally have

(
∧
α

Uα) ∨ V 6=
∧
α

(Uα ∨ V ).

Proposition 6. Let X be a topos and let X be an object of X. Then the poset Sub(X) is a locale.

Proof. Every collection of objects {Ui ⊆ X}i∈I has a join, given by the image of the map
∐
i∈I Ui → X. For
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V ⊆ X, we compute

(
∨

Ui) ∧ V = (
∨

Ui)×X V

= Im(
∐
i∈I

Ui → X)×X V

= Im((
∐
i∈I

Ui)×X V → V )

= Im(
∐
i∈I

(Ui ×X V )→ V )

=
∨
i∈I

Ui ∧ V.

Definition 7. Let X be a topos and let 1 be the final object of X. Then Sub(1) is a locale. We will refer
to Sub(1) as the underlying locale of X.

In the situation of Definition 7, the poset Sub(1) can be regarded as a full subcategory of X.

Definition 8. Let X be a topos. We say that X is localic if it is generated by Sub(1): that is, if every object
X ∈ X admits a covering {Ui → X}, where each Ui is a subobject of 1.

Example 9. Let C be a category which admits finite limits, equipped with a Grothendieck topology. Suppose
that C is a poset (that is, every object of C can be identified with a subobject of the final object). Then the
topos Shv(C) is localic: it is generated by objects of the form LhC , each of which is a subobject of the final
object of Shv(C).

Example 10. Let X be a topological space. Then the topos Shv(X) is localic (this is a special case of
Example 9).

We now prove a converse to Example 9.

Exercise 11. Let U be a locale. Show that U admits a Grothendieck topology, where a collection of maps
{Ui → X} is a covering if X =

∨
Ui.

Proposition 12. Let X be a localic topos, and regard the underlying locale U = Sub(1) as equipped with the
Grothendieck topology of Exercise 11. Then we have a canonical equivalence X ' Shv(U).

Proof. We can regard U as an essentially small full subcategory of X which is closed under finite limits. If
X is localic, then U generates X, so the desired result follows as in the proof of Giraud’s theorem.

We now proceed in the reverse direction.

Proposition 13. Let U be a locale. Then the Yoneda embedding h : U→ Fun(Uop, Set) induces an equiva-
lence from U to the poset of subobjects of 1 in Shv(U).

Proof. We first show that, for each U ∈ U, the presheaf hU is a sheaf. Suppose we are given a covering
{Vi → V }i∈I in U; we wish to show that the canonical map

hU (V )→
∏
i

hU (Vi) ⇒
∏
i,j

hU (Vi ∧ Vj)

is an equalizer diagram. Equivalently, we wish to show that V ≤ U if and only if each Vi ≤ U , which follows
from the identity V =

∨
i∈I Vi.
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It is clear that each hU is a subobject of the final object of Shv(U) (note that hU (V ) is a singleton
for V ≤ U , and empty otherwise). Conversely, let F ∈ Shv(U) be a subobject of the final object, so
that F (V ) has at most one element for each V ∈ U. Set U =

∨
F(V )6=∅ V . Then we have a covering

{V → U}F(V )6=∅. Invoking the assumption that F is a sheaf, we conclude that F (U) 6= ∅. We therefore

have F (V ) =

{
∗ if V ≤ U

∅ otherwise.
, so that F ' hU .

We can summarize Propositions 12 and 13 more informally by saying that we have an equivalence

{ Localic topoi } ' { Locales }.

To every localic topos X, we can associate the locale Sub(1) of subobjects of the final object; to any locale
U, we can associate a topos Shv(U), and these constructions are mutually inverse (up to equivalence). In
fact, we can be a bit more precise.

Definition 14. Let U and V be locales. A morphism of locales from V to U is an order-preserving map
f∗ : U→ V such that f∗ preserves finite meets and arbitrary joins (equivalently, it preserves finite limits and
small colimits, if we view U and V as categories). We let Fun∗(U,V) denote the full subcategory of Fun(U,V)
spanned by the morphisms of locales from V to U (note that Fun∗(U,V) is a poset).

Proposition 15. Let U be a locale and let X be a topos with underlying locale Sub(1). Then composition
with the Yoneda embedding h : U→ Shv(U) induces an equivalence of categories

Fun∗(Shv(U),X)→ Fun∗(U,Sub(1)).

In other words, the category of geometric morphisms from X to Shv(U) is equivalent to the poset of morphisms
of locales from Sub(1) to U.

Proof. We proved in Lecture 12 that composition with h induces an equivalence of categories Fun∗(Shv(U),X)→
Fun′(U,X), where Fun′(U,X) is the full subcategory of Fun(U,X) spanned by those functors f : U→ X which
preserve finite limits and coverings. Since every object of U is a subobject of the final object, any functor
f : U → X which preserves finite limits automatically carries each element of U to a subobject of the final
object 1 ∈ X, and can therefore be identified with a map of posets g : U → Sub(1). In this case, the
assumption that f preserves finite limits translates into the assumption that g preserves finite meets, and
the assumption that f preserves coverings translates into the assumption that g preserves infinite joins.

We can summarize the situation as follows: there are adjoint functors (of 2-categories)

{Topoi}
X7→Sub(1)//{Locales}
U 7→Shv(U)
oo .

where the construction U 7→ Shv(U) is fully faithful by virtue of Proposition 13; its essential image is the
2-category of localic topoi. It follows that for every topos X, there is a universal example of a localic topos
which admits a geometric morphism from X, given by Shv(Sub(1)). We refer to this topos as the localic
reflection of X.

Example 16. Let X be a topological space equipped with an action of a (discrete) group G. Then the
category ShvG(X) of G-equivariant sheaves on X is a topos. The subobjects of the final object of Shv(X)
can be identified with open subsets of X. It follows that subobjects of the final object of ShvG(X) can be
identified with G-equivariant open subsets of X, or equivalently with open subsets of the quotient X/G (where
we endow X/G with the quotient topology). It follows that there is a canonical map ShvG(X)→ Shv(X/G)
which exhibits Shv(X/G) as the localic reflection of ShvG(X).

3


