Lecture 14: Locales and Topoi

March 5, 2018

Recall that, if X is an object of a coherent category €, then the poset Sub(X) is a distributive lattice. If
C is a topos, we can say more.

Definition 1. A locale is a poset U with the following properties:
(a) Every subset S C U has a least upper bound \/ S.

It follows from (a) that every subset S C U also has a greatest lower bound A S, given by the least upper
bound of the set {U € U : (VV € S)U < V} of all lower bounds for S. In particular, every pair of elements
U,V € U have ameet U AV.

(b) For each element V' € U and every set of elements {U,}, we have a distributive law

(VUa) AV =\/(Ua A V).

Remark 2. Every locale is a distributive lattice.

Exercise 3. Let U be a poset satisfying condition (a) of Definition 1. Show that U is a locale if and only
if it is a Heyting algebra: that is, if and only if for every pair of elements U,V € U, there is an element
(U=V)eUsuch that W < (U= V) ifand only if UAW < V.

Example 4. Let B be a complete Boolean algebra (that is, a Boolean algebra satisfying condition (a) of
Definition 1). Then B is a locale.

Example 5. Let X be a topological space and let U(X) be the collection of open subsets of X, partially
ordered with respect to inclusion. Then U(X) is a locale. Moreover, the join \/ U, of a collection of elements
U, € U(X) coincides with the set-theoretic union |J Uy, and the meet of a pair U,V € U(X) is given by the
set-theoretic intersection U NV

Beware that the meet of an infinite set of elements U, € U(X) usually does not coincide with the
intersection [ U,, because the intersection [ U, need not be open; instead, A U, is given by the interior of
(Us. In particular, we generally have

(AUa) VV # \(Ua vV V).

Proposition 6. Let X be a topos and let X be an object of X. Then the poset Sub(X) is a locale.

Proof. Every collection of objects {U; C X} has a join, given by the image of the map [[;.; U; — X. For



V C X, we compute

\/Ui) AV (VUi) xxV

= Im(HUz —)X) xXx V
iel
= Im((JJUi) xx V= V)
iel
= Im(JJUi xx V)= V)
el
= UiV
el
O

Definition 7. Let X be a topos and let 1 be the final object of X. Then Sub(1) is a locale. We will refer
to Sub(1) as the underlying locale of X.

In the situation of Definition 7, the poset Sub(1) can be regarded as a full subcategory of X.

Definition 8. Let X be a topos. We say that X is localic if it is generated by Sub(1): that is, if every object
X € X admits a covering {U; — X}, where each U; is a subobject of 1.

Example 9. Let C be a category which admits finite limits, equipped with a Grothendieck topology. Suppose
that € is a poset (that is, every object of € can be identified with a subobject of the final object). Then the
topos Shv (@) is localic: it is generated by objects of the form Lh¢, each of which is a subobject of the final
object of Shv(C).

Example 10. Let X be a topological space. Then the topos Shv(X) is localic (this is a special case of
Example 9).

We now prove a converse to Example 9.

Exercise 11. Let U be a locale. Show that U admits a Grothendieck topology, where a collection of maps
{U; — X} is a covering if X = \/ U;.

Proposition 12. Let X be a localic topos, and regard the underlying locale U = Sub(1) as equipped with the
Grothendieck topology of Exercise 11. Then we have a canonical equivalence X ~ Shv(U).

Proof. We can regard U as an essentially small full subcategory of X which is closed under finite limits. If
X is localic, then U generates X, so the desired result follows as in the proof of Giraud’s theorem. O

We now proceed in the reverse direction.

Proposition 13. Let U be a locale. Then the Yoneda embedding h : W — Fun(U°P, Set) induces an equiva-
lence from U to the poset of subobjects of 1 in Shv(U).

Proof. We first show that, for each U € U, the presheaf Ay is a sheaf. Suppose we are given a covering
{Vi = V}ier in U; we wish to show that the canonical map

ho(V) = [Tho (V) = TTho(Vi A V)

is an equalizer diagram. Equivalently, we wish to show that V < U if and only if each V; < U, which follows
from the identity V' =\/,.; V;.



It is clear that each hy is a subobject of the final object of Shv(U) (note that hy (V) is a singleton
for V. < U, and empty otherwise). Conversely, let .# € Shv(U) be a subobject of the final object, so
that 7 (V) has at most one element for each V' € U. Set U = \/ 5,y V. Then we have a covering

{V = U}z )29 Invoking the assumption that .7 is a sheaf, we conclude that .7#(U) # 0. We therefore

it vV <U
have Z (V) = ot —  ,sothat F ~ hy. O
(0  otherwise.

We can summarize Propositions 12 and 13 more informally by saying that we have an equivalence
{ Localic topoi } ~ { Locales }.

To every localic topos X, we can associate the locale Sub(1) of subobjects of the final object; to any locale
U, we can associate a topos Shv(U), and these constructions are mutually inverse (up to equivalence). In
fact, we can be a bit more precise.

Definition 14. Let U and V be locales. A morphism of locales from V to U is an order-preserving map
f*: U — V such that f* preserves finite meets and arbitrary joins (equivalently, it preserves finite limits and
small colimits, if we view U and V as categories). We let Fun®(U, V) denote the full subcategory of Fun(U, V)
spanned by the morphisms of locales from V to U (note that Fun®(U, V) is a poset).

Proposition 15. Let U be a locale and let X be a topos with underlying locale Sub(1). Then composition
with the Yoneda embedding h : U — Shv(U) induces an equivalence of categories

Fun®(Shv(U), X) — Fun* (U, Sub(1)).

In other words, the category of geometric morphisms from X to Shv(U) is equivalent to the poset of morphisms
of locales from Sub(1) to U.

Proof. We proved in Lecture 12 that composition with k induces an equivalence of categories Fun® (Shv(U), X) —
Fun’(U, X), where Fun’(U, X) is the full subcategory of Fun(U, X) spanned by those functors f : U — X which
preserve finite limits and coverings. Since every object of U is a subobject of the final object, any functor
f U — X which preserves finite limits automatically carries each element of U to a subobject of the final
object 1 € X, and can therefore be identified with a map of posets g : U — Sub(1). In this case, the
assumption that f preserves finite limits translates into the assumption that g preserves finite meets, and
the assumption that f preserves coverings translates into the assumption that g preserves infinite joins. [

We can summarize the situation as follows: there are adjoint functors (of 2-categories)

{Topoi}=—=={Locales}.
U—Shv(U

XHSub(]ﬁ
where the construction U — Shv(U) is fully faithful by virtue of Proposition 13; its essential image is the
2-category of localic topoi. It follows that for every topos X, there is a universal example of a localic topos
which admits a geometric morphism from X, given by Shv(Sub(1)). We refer to this topos as the localic
reflection of X.

Example 16. Let X be a topological space equipped with an action of a (discrete) group G. Then the
category Shvg(X) of G-equivariant sheaves on X is a topos. The subobjects of the final object of Shv(X)
can be identified with open subsets of X. It follows that subobjects of the final object of Shvg(X) can be
identified with G-equivariant open subsets of X, or equivalently with open subsets of the quotient X/G (where
we endow X/G with the quotient topology). It follows that there is a canonical map Shvg(X) — Shv(X/G)
which exhibits Shv(X/G) as the localic reflection of Shvg(X).



