Lecture 14: Locales and Topoi

March 5, 2018

Recall that, if X is an object of a coherent category \mathcal{C} , then the poset Sub(X) is a distributive lattice. If \mathcal{C} is a topos, we can say more.

Definition 1. A *locale* is a poset \mathcal{U} with the following properties:

(a) Every subset $S \subseteq \mathcal{U}$ has a least upper bound $\bigvee S$.

It follows from (a) that every subset $S \subseteq \mathcal{U}$ also has a greatest lower bound $\bigwedge S$, given by the least upper bound of the set $\{U \in \mathcal{U} : (\forall V \in S) U \leq V\}$ of all lower bounds for S. In particular, every pair of elements $U, V \in \mathcal{U}$ have a meet $U \land V$.

(b) For each element $V \in \mathcal{U}$ and every set of elements $\{U_{\alpha}\}$, we have a distributive law

$$(\bigvee_{\alpha} U_{\alpha}) \wedge V = \bigvee_{\alpha} (U_{\alpha} \wedge V).$$

Remark 2. Every locale is a distributive lattice.

Exercise 3. Let \mathcal{U} be a poset satisfying condition (a) of Definition 1. Show that \mathcal{U} is a locale if and only if it is a *Heyting algebra*: that is, if and only if for every pair of elements $U, V \in \mathcal{U}$, there is an element $(U \Rightarrow V) \in \mathcal{U}$ such that $W \leq (U \Rightarrow V)$ if and only if $U \wedge W \leq V$.

Example 4. Let B be a complete Boolean algebra (that is, a Boolean algebra satisfying condition (a) of Definition 1). Then B is a locale.

Example 5. Let X be a topological space and let $\mathcal{U}(X)$ be the collection of open subsets of X, partially ordered with respect to inclusion. Then $\mathcal{U}(X)$ is a locale. Moreover, the join $\bigvee U_{\alpha}$ of a collection of elements $U_{\alpha} \in \mathcal{U}(X)$ coincides with the set-theoretic union $\bigcup U_{\alpha}$, and the meet of a pair $U, V \in \mathcal{U}(X)$ is given by the set-theoretic intersection $U \cap V$.

Beware that the meet of an *infinite* set of elements $U_{\alpha} \in \mathcal{U}(X)$ usually does not coincide with the intersection $\bigcap U_{\alpha}$, because the intersection $\bigcap U_{\alpha}$ need not be open; instead, $\bigwedge U_{\alpha}$ is given by the interior of $\bigcap U_{\alpha}$. In particular, we generally have

$$\left(\bigwedge_{\alpha} U_{\alpha}\right) \lor V \neq \bigwedge_{\alpha} (U_{\alpha} \lor V).$$

Proposition 6. Let \mathfrak{X} be a topos and let X be an object of \mathfrak{X} . Then the poset Sub(X) is a locale.

Proof. Every collection of objects $\{U_i \subseteq X\}_{i \in I}$ has a join, given by the image of the map $\coprod_{i \in I} U_i \to X$. For

 $V \subseteq X$, we compute

$$(\bigvee U_i) \wedge V = (\bigvee U_i) \times_X V$$

= $\operatorname{Im}(\coprod_{i \in I} U_i \to X) \times_X V$
= $\operatorname{Im}((\coprod_{i \in I} U_i) \times_X V \to V)$
= $\operatorname{Im}((\coprod_{i \in I} (U_i \times_X V) \to V))$
= $\bigvee_{i \in I} U_i \wedge V.$

Definition 7. Let \mathcal{X} be a topos and let **1** be the final object of \mathcal{X} . Then Sub(**1**) is a locale. We will refer to Sub(**1**) as the *underlying locale of* \mathcal{X} .

In the situation of Definition 7, the poset Sub(1) can be regarded as a full subcategory of \mathfrak{X} .

Definition 8. Let \mathfrak{X} be a topos. We say that \mathfrak{X} is *localic* if it is generated by Sub(1): that is, if every object $X \in \mathfrak{X}$ admits a covering $\{U_i \to X\}$, where each U_i is a subobject of **1**.

Example 9. Let \mathcal{C} be a category which admits finite limits, equipped with a Grothendieck topology. Suppose that \mathcal{C} is a poset (that is, every object of \mathcal{C} can be identified with a subobject of the final object). Then the topos Shv(\mathcal{C}) is localic: it is generated by objects of the form Lh_C , each of which is a subobject of the final object of Shv(\mathcal{C}).

Example 10. Let X be a topological space. Then the topos Shv(X) is localic (this is a special case of Example 9).

We now prove a converse to Example 9.

Exercise 11. Let \mathcal{U} be a locale. Show that \mathcal{U} admits a Grothendieck topology, where a collection of maps $\{U_i \to X\}$ is a covering if $X = \bigvee U_i$.

Proposition 12. Let \mathfrak{X} be a localic topos, and regard the underlying locale $\mathfrak{U} = \mathrm{Sub}(1)$ as equipped with the Grothendieck topology of Exercise 11. Then we have a canonical equivalence $\mathfrak{X} \simeq \mathrm{Shv}(\mathfrak{U})$.

Proof. We can regard \mathcal{U} as an essentially small full subcategory of \mathcal{X} which is closed under finite limits. If \mathcal{X} is localic, then \mathcal{U} generates \mathcal{X} , so the desired result follows as in the proof of Giraud's theorem. \Box

We now proceed in the reverse direction.

Proposition 13. Let \mathcal{U} be a locale. Then the Yoneda embedding $h : \mathcal{U} \to \operatorname{Fun}(\mathcal{U}^{\operatorname{op}}, \operatorname{Set})$ induces an equivalence from \mathcal{U} to the poset of subobjects of $\mathbf{1}$ in $\operatorname{Shv}(\mathcal{U})$.

Proof. We first show that, for each $U \in \mathcal{U}$, the presheaf h_U is a sheaf. Suppose we are given a covering $\{V_i \to V\}_{i \in I}$ in \mathcal{U} ; we wish to show that the canonical map

$$h_U(V) \to \prod_i h_U(V_i) \rightrightarrows \prod_{i,j} h_U(V_i \wedge V_j)$$

is an equalizer diagram. Equivalently, we wish to show that $V \leq U$ if and only if each $V_i \leq U$, which follows from the identity $V = \bigvee_{i \in I} V_i$.

It is clear that each h_U is a subobject of the final object of $\operatorname{Shv}(\mathcal{U})$ (note that $h_U(V)$ is a singleton for $V \leq U$, and empty otherwise). Conversely, let $\mathscr{F} \in \operatorname{Shv}(\mathcal{U})$ be a subobject of the final object, so that $\mathscr{F}(V)$ has at most one element for each $V \in \mathcal{U}$. Set $U = \bigvee_{\mathscr{F}(V) \neq \emptyset} V$. Then we have a covering $\{V \to U\}_{\mathscr{F}(V) \neq \emptyset}$. Invoking the assumption that \mathscr{F} is a sheaf, we conclude that $\mathscr{F}(U) \neq \emptyset$. We therefore have $\mathscr{F}(V) = \begin{cases} * & \text{if } V \leq U \\ \emptyset & \text{otherwise.} \end{cases}$, so that $\mathscr{F} \simeq h_U$.

We can summarize Propositions 12 and 13 more informally by saying that we have an equivalence

{ Localic topoi } \simeq { Locales }.

To every localic topos \mathfrak{X} , we can associate the locale $\operatorname{Sub}(1)$ of subobjects of the final object; to any locale \mathfrak{U} , we can associate a topos $\operatorname{Shv}(\mathfrak{U})$, and these constructions are mutually inverse (up to equivalence). In fact, we can be a bit more precise.

Definition 14. Let \mathcal{U} and \mathcal{V} be locales. A morphism of locales from \mathcal{V} to \mathcal{U} is an order-preserving map $f^* : \mathcal{U} \to \mathcal{V}$ such that f^* preserves finite meets and arbitrary joins (equivalently, it preserves finite limits and small colimits, if we view \mathcal{U} and \mathcal{V} as categories). We let $\operatorname{Fun}^*(\mathcal{U}, \mathcal{V})$ denote the full subcategory of $\operatorname{Fun}(\mathcal{U}, \mathcal{V})$ spanned by the morphisms of locales from \mathcal{V} to \mathcal{U} (note that $\operatorname{Fun}^*(\mathcal{U}, \mathcal{V})$ is a poset).

Proposition 15. Let \mathcal{U} be a locale and let \mathcal{X} be a topos with underlying locale Sub(1). Then composition with the Yoneda embedding $h: \mathcal{U} \to Shv(\mathcal{U})$ induces an equivalence of categories

$$\operatorname{Fun}^*(\operatorname{Shv}(\mathcal{U}), \mathfrak{X}) \to \operatorname{Fun}^*(\mathcal{U}, \operatorname{Sub}(\mathbf{1})).$$

In other words, the category of geometric morphisms from \mathfrak{X} to $\operatorname{Shv}(\mathfrak{U})$ is equivalent to the poset of morphisms of locales from $\operatorname{Sub}(1)$ to \mathfrak{U} .

Proof. We proved in Lecture 12 that composition with h induces an equivalence of categories $\operatorname{Fun}^*(\operatorname{Shv}(\mathcal{U}), \mathfrak{X}) \to \operatorname{Fun}'(\mathcal{U}, \mathfrak{X})$, where $\operatorname{Fun}'(\mathcal{U}, \mathfrak{X})$ is the full subcategory of $\operatorname{Fun}(\mathcal{U}, \mathfrak{X})$ spanned by those functors $f : \mathcal{U} \to \mathfrak{X}$ which preserve finite limits and coverings. Since every object of \mathcal{U} is a subobject of the final object, any functor $f : \mathcal{U} \to \mathfrak{X}$ which preserves finite limits automatically carries each element of \mathcal{U} to a subobject of the final object $\mathbf{1} \in \mathfrak{X}$, and can therefore be identified with a map of posets $g : \mathcal{U} \to \operatorname{Sub}(\mathbf{1})$. In this case, the assumption that f preserves finite limits translates into the assumption that g preserves finite meets, and the assumption that f preserves coverings translates into the assumption that g preserves infinite joins. \Box

We can summarize the situation as follows: there are adjoint functors (of 2-categories)

$$\{\operatorname{Topoi}_{\mathfrak{U}\mapsto\operatorname{Shv}(\mathfrak{U})}^{\mathfrak{X}\mapsto\operatorname{Sub}(\mathbf{1})} \text{Locales}\}.$$

where the construction $\mathcal{U} \mapsto \operatorname{Shv}(\mathcal{U})$ is fully faithful by virtue of Proposition 13; its essential image is the 2-category of localic topoi. It follows that for every topos \mathcal{X} , there is a universal example of a localic topos which admits a geometric morphism from \mathcal{X} , given by $\operatorname{Shv}(\operatorname{Sub}(1))$. We refer to this topos as the *localic reflection* of \mathcal{X} .

Example 16. Let X be a topological space equipped with an action of a (discrete) group G. Then the category $\operatorname{Shv}_G(X)$ of G-equivariant sheaves on X is a topos. The subobjects of the final object of $\operatorname{Shv}_G(X)$ can be identified with open subsets of X. It follows that subobjects of the final object of $\operatorname{Shv}_G(X)$ can be identified with G-equivariant open subsets of X, or equivalently with open subsets of the quotient X/G (where we endow X/G with the quotient topology). It follows that there is a canonical map $\operatorname{Shv}_G(X) \to \operatorname{Shv}(X/G)$ which exhibits $\operatorname{Shv}(X/G)$ as the localic reflection of $\operatorname{Shv}_G(X)$.