
Lecture 11: Coherent Topoi

February 22, 2018

Recall that if X is an object of a topos X, we say that a collection of morphisms {fi : Ui → X}i∈I is a
covering if the induced map qUi → X is an effective epimorphism.

Definition 1. Let X be a topos. We say that an object X ∈ X is quasi-compact if every covering of X has
a finite subcovering. In other words, for every covering {Ui → X}i∈I , we can choose a finite subset I0 ⊆ I
such that {Ui → X}i∈I0 is also a covering.

Remark 2. Let X be an object of a topos X. Then a collection of morphisms {fi : Ui → X} is a covering
if and only if the collection of subobjects {Im(fi) ⊆ X} is a covering. Consequently, X is quasi-compact if
and only if every covering of X by subobjects {Ui ⊆ X}i∈I admits a finite subcover.

Proposition 3. Let X be a topos and let f : X → Y be an effective epimorphism in X. If X is quasi-compact,
then so is Y .

Proof. Let {Ui → Y }i∈I be a covering of Y . Then {Ui ×Y X → X}i∈I is a covering of X. Since X is
quasi-compact, this cover admits a finite subcover {Ui×Y X → X}i∈I0 . Since f is an effective epimorphism,
it follows that the collection of morphisms {Ui ×Y X → Y }i∈I0 is a covering of Y . In particular, the maps
{Ui → Y }i∈I0 give a covering of Y .

Exercise 4. Let X be a topos and let {Xi}i∈I be a collection of objects indexed by a finite set I, having a
coproduct X = qi∈IXi. Show that X is quasi-compact if and only if each Xi is quasi-compact. In particular,
the initial object of X is always quasi-compact.

Definition 5. Let X be a topos. We will say that an object X ∈ X is quasi-separated if, for every pair of
morphisms U → X ← V , where U and V are quasi-compact, the fiber product U×X V is also quasi-compact.

Beware that the requirement of Definition 5 is sometimes satisfied for uninteresting reasons. For example,
if X = Shv(Rn) is the category of sheaves on the Euclidean space Rn, then the only quasi-compact object of
X is the initial object. In this case, every object of X is quasi-separated. For Definition 5 to be meaningful,
we need to ensure that there exists a good supply of quasi-compact objects.

Definition 6. Let X be a topos. We will say that X is coherent if there exists a collection of objects U

satisfying the following conditions:

• The collection U generates X: that is, every object X ∈ X admits a covering {Ui → X}, where each
Ui belongs to U.

• The collection U is closed under finite products. In particular, it contains a final object of X.

• Every object of U is quasi-compact and quasi-separated.

Remark 7. Let X be a coherent topos. Then the final object of X is quasi-separated. It follows that the
collection of quasi-compact objects of X is closed under finite products.

We now describe a large class of examples of coherent topoi.
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Definition 8. Let C be a category which admits finite limits. We say that a Grothendieck topology on C is
finitary if, for every covering {Ui → X}i∈I in C, there exists a finite subset I0 ⊆ I such that {Ui → X}i∈I0
is also a covering.

Proposition 9. Let C be a small category which admits finite limits which is equipped with a finitary
Grothendieck topology. Then the topos Shv(C) is coherent.

Proof. Let L : Fun(Cop, Set) → Shv(C) be the sheafification functor, and let U be the collection of all
objects of the form LhC for C ∈ C. We claim that U satisfies the requirements of Definition 6. We saw
in the previous lecture that U generates Shv(C). Moreover, since the functor L preserves finite limits,
the construction C 7→ LhC preserves finite limits. It follows that U is closed under finite products. It will
therefore suffice to show that for each object C ∈ C, the sheaf LhC is quasi-compact and quasi-separated. We
first verify quasi-compactness. Choose a covering {F i → LhC}i∈I . Note that the identity map idC : C → C
determines a section s ∈ (LhC)(C). It follows that there exists a covering {Cj → C}j∈J in the category C

such that, for each j ∈ J , the image sj ∈ (LhC)(Cj) of s can be lifted to an element s̃j ∈ F ij (Cj) for some
ij ∈ I. Since the topology on C is finitary, we may assume without loss of generality that J is finite. Setting
I0 = {ij}j∈J ⊆ I, we deduce that {F i → LhC}i∈I0 is a finite subcover of {F i → LhC}i∈I .

We now argue that each LhC is quasi-separated. Choose quasi-compact objects F ,G ∈ Shv(C) equipped
with maps F → LhC ← G ; we wish to show that the fiber product F ×LhC

G is quasi-compact. Note
that F admits a covering {F i → F}i∈I , where each F i belongs to U. Since F is quasi-compact, we may
assume that I is finite. Then {F i×LhC

G }i∈I is a finite covering of F ×LhC
G . It will therefore suffice to

show that each F i×LhC
G is quasi-compact. Replacing F by F i, we are reduced to the case where F has

the form LhD for some object D ∈ C. In this case, the map F → LhC can be identified with an element
of (LhC)(D). Passing to a covering of D (which we can also replace by a finite subcover), we may assume
that this element lies in the image of the map hC(D)→ (LhC)(D). In other words, we may assume that the
map F → LhC arises from applying the functor Lh• to a morphism D → C in the category C. Similarly,
we may assume that the map G → LhC arises by applying Lh• to a morphism E → C in C. In this case,
the fiber product F ×LhC

G can be identified with LhD×CE , which is quasi-compact by the first part of the
argument.

Our next goal is to show that every coherent topos X arises from the construction of Proposition 9 in a
canonical (though not unique) fashion.

Definition 10. Let X be a coherent topos. We will say that an object X ∈ X is coherent if it is quasi-compact
and quasi-separated.

It will be convenient to employ another characterization of the class of quasi-separated objects.

Lemma 11. Let X be a coherent topos. Then an object X ∈ C is quasi-separated if and only if it satisfies
the following condition:

(∗) For every quasi-compact object U ∈ X and every pair of morphisms f, g : U → X, the equalizer
Eq(U ⇒ X) is quasi-compact.

Proof. Suppose first that X is quasi-separated, and that we are given a pair of morphisms f, g : U → X; we
wish to show that the equalizer Eq(U ⇒ X) is quasi-compact. Let U be as in Definition 6, and choose a
covering {Ui → U}i∈I where each Ui belongs to U. Since U is quasi-compact, we can assume that this covering
is finite. Then f and g induce maps fi, gi : Ui → X, having an equalizer Eq(Ui ⇒ X) ' Eq(U ⇒ X)×U Ui.
It follows that Eq(U ⇒ X) admits a finite covering by the objects Eq(Ui ⇒ X). It will therefore suffice to
show that each Eq(Ui ⇒ X) is quasi-compact. In other words, we may replace U by Ui and thereby reduce
to the case where U ∈ U.

Unwinding the definitions, we see that the equalizer Eq(U ⇒ X) can be identified with the fiber product

(U ×X U)×U×U U.
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Note that the product U × U belongs to U, and is therefore quasi-separated. Since U and and U ×X U are
quasi-compact (the second by virtue of our assumption that X is quasi-separated), it follows that Eq(U ⇒ X)
is also quasi-compact.

We now prove the converse. Assume that condition (∗) is satisfied; we wish to prove that X is quasi-
separated. Choose quasi-compact objects U, V ∈ X equipped with maps U → X ← V ; we wish to show that
the fiber product U ×X V is quasi-compact. Unwinding the definitions, we can identify U ×X V with the
equalizer of a diagram (U × V ) ⇒ X. The desired result now follows from (∗), since U × V is a compact
object of X (Remark 7).

Lemma 12. Let X be a coherent topos. Then the collection of quasi-separated objects of X is closed under
finite products.

Proof. Let X and Y be quasi-separated objects of X. Suppose we are given a quasi-compact object U ∈ X

and a pair of maps f, g : U → X × Y . Since X satisfies condition (∗) of Lemma 11, we deduce that the
equalizer Eq(U ⇒ X) is a quasi-compact subobject of U . Note that the equalizer Eq(U ⇒ X × Y ) can be
identified with the equalizer of a diagram

Eq(U ⇒ X) ⇒ Y,

and is therefore also quasi-compact (since Y satisfies the condition (∗).

Lemma 13. Let X be a coherent topos. Then the collection of coherent objects of X is closed under finite
limits.

Proof. It follows immediately from the definition that the final object of X is coherent. It will therefore suffice
to show that the collection of coherent objects is closed under fiber products. Suppose we are given maps
X → Y ← Z, where X, Y , and Z are coherent. Then X and Z are quasi-compact and Y is quasi-separated,
so the fiber product X ×Y Z is quasi-compact. Moreover, X ×Y Z is a subobject of the product X × Z,
which is quasi-separated by Lemma 12. It follows that X ×Y Z is also quasi-separated.

Lemma 14. Let X be any topos and let X ∈ X be an object. Then Sub(X) is a set.

Remark 15. Since a topos X is usually a large category, Lemma 14 is not automatic. The collection of
isomorphism classes of objects of X will almost always be a proper class. However, Lemma 14 asserts that
the collection of isomorphism classes of subobjects of a fixed object X is bounded in size.

Proof of Lemma 14. Let U be a set of generators for X. Let Sub0(X) denote the collection of all subobjects
of X of the form Im(f), where f : U → X is a morphism with U ∈ U. Since U is a set and HomX(U,X) is
a set for each U ∈ U, the collection Sub0(X) is a set. Note that every subobject X0 ⊆ X admits a covering
{Ui → X0}, where each Ui belongs to U. It follows that, as an element of Sub(X), we can identify X0 with
the least upper bound of {Y ∈ Sub0(X) : Y ⊆ X0}. In particular, the construction

(X0 ∈ Sub(X)) 7→ ({Y ∈ Sub0(X) : Y ⊆ X0} ⊆ Sub0(X))

determines a monomorphism from Sub(X) to the power set of Sub0(X), so that Sub(X) is also a set.

Lemma 16. Let X be a topos and let X0 ⊆ X be the full subcategory of X spanned by the quasi-compact
objects. Then X0 is essentially small (that is, it is equivalent to a small category).

Proof. Let U be a set of generators for X. Enlarging U if necessary, we may assume that U is closed under
finite coproducts. For each object X ∈ X, we can choose a covering {Ui → X}, where each Ui belongs to U .
If X is quasi-compact, this covering admits a finite subcover. We can therefore choose a single object U ∈ U

and an effective epimorphism U → X. It follows that X can be identified with the coequalizer of a diagram
R ⇒ U , where R = U ×X U ⊆ U × U . Note that for each U ∈ U, there is a bounded number of possibilities
for what the equivalence relation R can be (since Sub(U × U) is a set, by virtue of Lemma 14).
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Theorem 17. Let X be a coherent topos and let Xcoh ⊆ X be the full subcategory spanned by the coherent
objects. Then:

(a) The category Xcoh admits a finitary Grothendieck topology, where a collection of morphisms {Ui → X}
in Xcoh is a covering if and only if it is a covering in X.

(b) For each X ∈ X, let hX : X
op
coh → Set denote the functor represented by X (given by hX(Y ) =

HomX(Y,X)). Then the construction X 7→ hX induces an equivalence of categories X ' Shv(Xcoh).

Proof. Since Xcoh is an essentially small subcategory of X (Lemma 16) which is closed under finite limits
(Lemma 13) and generates X (Definition 6), assertions (a) and (b) follow from Giraud’s theorem (see Lecture
10). Note that the topology on Xcoh is finitary because every object of Xcoh is quasi-compact.
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