Lecture 11: Coherent Topoi

February 22, 2018

Recall that if X is an object of a topos X, we say that a collection of morphisms $\{f_i : U_i \to X\}_{i \in I}$ is a *covering* if the induced map $\coprod U_i \to X$ is an effective epimorphism.

Definition 1. Let \mathfrak{X} be a topos. We say that an object $X \in \mathfrak{X}$ is quasi-compact if every covering of X has a finite subcovering. In other words, for every covering $\{U_i \to X\}_{i \in I}$, we can choose a finite subset $I_0 \subseteq I$ such that $\{U_i \to X\}_{i \in I_0}$ is also a covering.

Remark 2. Let X be an object of a topos X. Then a collection of morphisms $\{f_i : U_i \to X\}$ is a covering if and only if the collection of subobjects $\{\text{Im}(f_i) \subseteq X\}$ is a covering. Consequently, X is quasi-compact if and only if every covering of X by subobjects $\{U_i \subseteq X\}_{i \in I}$ admits a finite subcover.

Proposition 3. Let \mathfrak{X} be a topos and let $f : X \to Y$ be an effective epimorphism in \mathfrak{X} . If X is quasi-compact, then so is Y.

Proof. Let $\{U_i \to Y\}_{i \in I}$ be a covering of Y. Then $\{U_i \times_Y X \to X\}_{i \in I}$ is a covering of X. Since X is quasi-compact, this cover admits a finite subcover $\{U_i \times_Y X \to X\}_{i \in I_0}$. Since f is an effective epimorphism, it follows that the collection of morphisms $\{U_i \times_Y X \to Y\}_{i \in I_0}$ is a covering of Y. In particular, the maps $\{U_i \to Y\}_{i \in I_0}$ give a covering of Y.

Exercise 4. Let \mathfrak{X} be a topos and let $\{X_i\}_{i \in I}$ be a collection of objects indexed by a finite set I, having a coproduct $X = \prod_{i \in I} X_i$. Show that X is quasi-compact if and only if each X_i is quasi-compact. In particular, the initial object of \mathfrak{X} is always quasi-compact.

Definition 5. Let \mathcal{X} be a topos. We will say that an object $X \in \mathcal{X}$ is *quasi-separated* if, for every pair of morphisms $U \to X \leftarrow V$, where U and V are quasi-compact, the fiber product $U \times_X V$ is also quasi-compact.

Beware that the requirement of Definition 5 is sometimes satisfied for uninteresting reasons. For example, if $\mathcal{X} = \text{Shv}(\mathbb{R}^n)$ is the category of sheaves on the Euclidean space \mathbb{R}^n , then the only quasi-compact object of \mathcal{X} is the initial object. In this case, every object of \mathcal{X} is quasi-separated. For Definition 5 to be meaningful, we need to ensure that there exists a good supply of quasi-compact objects.

Definition 6. Let \mathcal{X} be a topos. We will say that \mathcal{X} is *coherent* if there exists a collection of objects \mathcal{U} satisfying the following conditions:

- The collection \mathcal{U} generates \mathfrak{X} : that is, every object $X \in \mathfrak{X}$ admits a covering $\{U_i \to X\}$, where each U_i belongs to \mathcal{U} .
- The collection \mathcal{U} is closed under finite products. In particular, it contains a final object of \mathcal{X} .
- Every object of \mathcal{U} is quasi-compact and quasi-separated.

Remark 7. Let \mathcal{X} be a coherent topos. Then the final object of \mathcal{X} is quasi-separated. It follows that the collection of quasi-compact objects of \mathcal{X} is closed under finite products.

We now describe a large class of examples of coherent topoi.

Definition 8. Let \mathcal{C} be a category which admits finite limits. We say that a Grothendieck topology on \mathcal{C} is *finitary* if, for every covering $\{U_i \to X\}_{i \in I}$ in \mathcal{C} , there exists a finite subset $I_0 \subseteq I$ such that $\{U_i \to X\}_{i \in I_0}$ is also a covering.

Proposition 9. Let C be a small category which admits finite limits which is equipped with a finitary Grothendieck topology. Then the topos Shv(C) is coherent.

Proof. Let *L* : Fun(C^{op}, Set) → Shv(C) be the sheafification functor, and let \mathcal{U} be the collection of all objects of the form Lh_C for $C \in \mathbb{C}$. We claim that \mathcal{U} satisfies the requirements of Definition 6. We saw in the previous lecture that \mathcal{U} generates Shv(C). Moreover, since the functor *L* preserves finite limits, the construction $C \mapsto Lh_C$ preserves finite limits. It follows that \mathcal{U} is closed under finite products. It will therefore suffice to show that for each object $C \in \mathbb{C}$, the sheaf Lh_C is quasi-compact and quasi-separated. We first verify quasi-compactness. Choose a covering $\{\mathscr{F}_i \to Lh_C\}_{i \in I}$. Note that the identity map $\mathrm{id}_C : C \to C$ determines a section $s \in (Lh_C)(C)$. It follows that there exists a covering $\{C_j \to C\}_{j \in J}$ in the category C such that, for each $j \in J$, the image $s_j \in (Lh_C)(C_j)$ of *s* can be lifted to an element $\widetilde{s}_j \in \mathscr{F}_{i_j}(C_j)$ for some $i_j \in I$. Since the topology on C is finitary, we may assume without loss of generality that *J* is finite. Setting $I_0 = \{i_j\}_{j \in J} \subseteq I$, we deduce that $\{\mathscr{F}_i \to Lh_C\}_{i \in I_0}$ is a finite subcover of $\{\mathscr{F}_i \to Lh_C\}_{i \in I}$.

We now argue that each Lh_C is quasi-separated. Choose quasi-compact objects $\mathscr{F}, \mathscr{G} \in Shv(\mathscr{C})$ equipped with maps $\mathscr{F} \to Lh_C \leftarrow \mathscr{G}$; we wish to show that the fiber product $\mathscr{F} \times_{Lh_C} \mathscr{G}$ is quasi-compact. Note that \mathscr{F} admits a covering $\{\mathscr{F}_i \to \mathscr{F}\}_{i \in I}$, where each \mathscr{F}_i belongs to \mathfrak{U} . Since \mathscr{F} is quasi-compact, we may assume that I is finite. Then $\{\mathscr{F}_i \times_{Lh_C} \mathscr{G}\}_{i \in I}$ is a finite covering of $\mathscr{F} \times_{Lh_C} \mathscr{G}$. It will therefore suffice to show that each $\mathscr{F}_i \times_{Lh_C} \mathscr{G}$ is quasi-compact. Replacing \mathscr{F} by \mathscr{F}_i , we are reduced to the case where \mathscr{F} has the form Lh_D for some object $D \in \mathfrak{C}$. In this case, the map $\mathscr{F} \to Lh_C$ can be identified with an element of $(Lh_C)(D)$. Passing to a covering of D (which we can also replace by a finite subcover), we may assume that this element lies in the image of the map $h_C(D) \to (Lh_C)(D)$. In other words, we may assume that the map $\mathscr{F} \to Lh_C$ arises from applying the functor Lh_{\bullet} to a morphism $D \to C$ in the category \mathfrak{C} . Similarly, we may assume that the map $\mathscr{G} \to Lh_C$ arises by applying Lh_{\bullet} to a morphism $E \to C$ in \mathfrak{C} . In this case, the fiber product $\mathscr{F} \times_{Lh_C} \mathscr{G}$ can be identified with $Lh_{D\times_C E}$, which is quasi-compact by the first part of the argument.

Our next goal is to show that every coherent topos \mathcal{X} arises from the construction of Proposition 9 in a canonical (though not unique) fashion.

Definition 10. Let \mathfrak{X} be a coherent topos. We will say that an object $X \in \mathfrak{X}$ is *coherent* if it is quasi-compact and quasi-separated.

It will be convenient to employ another characterization of the class of quasi-separated objects.

Lemma 11. Let \mathcal{X} be a coherent topos. Then an object $X \in \mathcal{C}$ is quasi-separated if and only if it satisfies the following condition:

(*) For every quasi-compact object $U \in \mathfrak{X}$ and every pair of morphisms $f, g : U \to X$, the equalizer $Eq(U \Rightarrow X)$ is quasi-compact.

Proof. Suppose first that X is quasi-separated, and that we are given a pair of morphisms $f, g: U \to X$; we wish to show that the equalizer $\operatorname{Eq}(U \rightrightarrows X)$ is quasi-compact. Let \mathcal{U} be as in Definition 6, and choose a covering $\{U_i \to U\}_{i \in I}$ where each U_i belongs to \mathcal{U} . Since U is quasi-compact, we can assume that this covering is finite. Then f and g induce maps $f_i, g_i: U_i \to X$, having an equalizer $\operatorname{Eq}(U_i \rightrightarrows X) \simeq \operatorname{Eq}(U \rightrightarrows X) \times_U U_i$. It follows that $\operatorname{Eq}(U \rightrightarrows X)$ admits a finite covering by the objects $\operatorname{Eq}(U_i \rightrightarrows X)$. It will therefore suffice to show that each $\operatorname{Eq}(U_i \rightrightarrows X)$ is quasi-compact. In other words, we may replace U by U_i and thereby reduce to the case where $U \in \mathcal{U}$.

Unwinding the definitions, we see that the equalizer $Eq(U \Rightarrow X)$ can be identified with the fiber product

$$(U \times_X U) \times_{U \times U} U.$$

Note that the product $U \times U$ belongs to \mathcal{U} , and is therefore quasi-separated. Since U and and $U \times_X U$ are quasi-compact (the second by virtue of our assumption that X is quasi-separated), it follows that $Eq(U \rightrightarrows X)$ is also quasi-compact.

We now prove the converse. Assume that condition (*) is satisfied; we wish to prove that X is quasiseparated. Choose quasi-compact objects $U, V \in \mathcal{X}$ equipped with maps $U \to X \leftarrow V$; we wish to show that the fiber product $U \times_X V$ is quasi-compact. Unwinding the definitions, we can identify $U \times_X V$ with the equalizer of a diagram $(U \times V) \rightrightarrows X$. The desired result now follows from (*), since $U \times V$ is a compact object of \mathcal{X} (Remark 7).

Lemma 12. Let \mathfrak{X} be a coherent topos. Then the collection of quasi-separated objects of \mathfrak{X} is closed under finite products.

Proof. Let X and Y be quasi-separated objects of \mathfrak{X} . Suppose we are given a quasi-compact object $U \in \mathfrak{X}$ and a pair of maps $f, g: U \to X \times Y$. Since X satisfies condition (*) of Lemma 11, we deduce that the equalizer $\operatorname{Eq}(U \rightrightarrows X)$ is a quasi-compact subobject of U. Note that the equalizer $\operatorname{Eq}(U \rightrightarrows X \times Y)$ can be identified with the equalizer of a diagram

$$Eq(U \rightrightarrows X) \rightrightarrows Y,$$

and is therefore also quasi-compact (since Y satisfies the condition (*).

Lemma 13. Let \mathfrak{X} be a coherent topos. Then the collection of coherent objects of \mathfrak{X} is closed under finite limits.

Proof. It follows immediately from the definition that the final object of \mathcal{X} is coherent. It will therefore suffice to show that the collection of coherent objects is closed under fiber products. Suppose we are given maps $X \to Y \leftarrow Z$, where X, Y, and Z are coherent. Then X and Z are quasi-compact and Y is quasi-separated, so the fiber product $X \times_Y Z$ is quasi-compact. Moreover, $X \times_Y Z$ is a subobject of the product $X \times Z$, which is quasi-separated by Lemma 12. It follows that $X \times_Y Z$ is also quasi-separated.

Lemma 14. Let \mathfrak{X} be any topos and let $X \in \mathfrak{X}$ be an object. Then Sub(X) is a set.

Remark 15. Since a topos \mathfrak{X} is usually a large category, Lemma 14 is not automatic. The collection of isomorphism classes of objects of \mathfrak{X} will almost always be a proper class. However, Lemma 14 asserts that the collection of isomorphism classes of *subobjects* of a fixed object X is bounded in size.

Proof of Lemma 14. Let \mathcal{U} be a set of generators for \mathcal{X} . Let $\operatorname{Sub}_0(X)$ denote the collection of all subobjects of X of the form $\operatorname{Im}(f)$, where $f: U \to X$ is a morphism with $U \in \mathcal{U}$. Since \mathcal{U} is a set and $\operatorname{Hom}_{\mathcal{X}}(U, X)$ is a set for each $U \in \mathcal{U}$, the collection $\operatorname{Sub}_0(X)$ is a set. Note that every subobject $X_0 \subseteq X$ admits a covering $\{U_i \to X_0\}$, where each U_i belongs to \mathcal{U} . It follows that, as an element of $\operatorname{Sub}(X)$, we can identify X_0 with the least upper bound of $\{Y \in \operatorname{Sub}_0(X) : Y \subseteq X_0\}$. In particular, the construction

$$(X_0 \in \operatorname{Sub}(X)) \mapsto (\{Y \in \operatorname{Sub}_0(X) : Y \subseteq X_0\} \subseteq \operatorname{Sub}_0(X))$$

determines a monomorphism from Sub(X) to the power set of $Sub_0(X)$, so that Sub(X) is also a set. \Box

Lemma 16. Let \mathfrak{X} be a topos and let $\mathfrak{X}_0 \subseteq \mathfrak{X}$ be the full subcategory of \mathfrak{X} spanned by the quasi-compact objects. Then \mathfrak{X}_0 is essentially small (that is, it is equivalent to a small category).

Proof. Let \mathcal{U} be a set of generators for \mathcal{X} . Enlarging \mathcal{U} if necessary, we may assume that \mathcal{U} is closed under finite coproducts. For each object $X \in \mathcal{X}$, we can choose a covering $\{U_i \to X\}$, where each U_i belongs to U. If X is quasi-compact, this covering admits a finite subcover. We can therefore choose a single object $U \in \mathcal{U}$ and an effective epimorphism $U \to X$. It follows that X can be identified with the coequalizer of a diagram $R \rightrightarrows U$, where $R = U \times_X U \subseteq U \times U$. Note that for each $U \in \mathcal{U}$, there is a bounded number of possibilities for what the equivalence relation R can be (since $\operatorname{Sub}(U \times U)$ is a set, by virtue of Lemma 14).

Theorem 17. Let \mathfrak{X} be a coherent topos and let $\mathfrak{X}_{coh} \subseteq \mathfrak{X}$ be the full subcategory spanned by the coherent objects. Then:

- (a) The category \mathfrak{X}_{coh} admits a finitary Grothendieck topology, where a collection of morphisms $\{U_i \to X\}$ in \mathfrak{X}_{coh} is a covering if and only if it is a covering in X.
- (b) For each $X \in \mathfrak{X}$, let $h_X : \mathfrak{X}_{coh}^{op} \to \text{Set}$ denote the functor represented by X (given by $h_X(Y) = \text{Hom}_{\mathfrak{X}}(Y, X)$). Then the construction $X \mapsto h_X$ induces an equivalence of categories $\mathfrak{X} \simeq \text{Shv}(\mathfrak{X}_{coh})$.

Proof. Since \mathfrak{X}_{coh} is an essentially small subcategory of \mathfrak{X} (Lemma 16) which is closed under finite limits (Lemma 13) and generates \mathfrak{X} (Definition 6), assertions (a) and (b) follow from Giraud's theorem (see Lecture 10). Note that the topology on \mathfrak{X}_{coh} is finitary because every object of \mathfrak{X}_{coh} is quasi-compact. \Box