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Let us begin this lecture by continuing the analysis of ideals in von Neumann algebras. Let A be a von
Neumann algebra and let I ⊆ A ⊆ B(V ) be an ultraweakly closed ∗-ideal. We saw in the last lecture that I
can be regarded as a von Neumann algebra acting on the Hilbert space IV ⊆ V . In particular, the identity
element of I corresponds, in B(V ), to the orthogonal projection e onto the closed subspace IV ⊆ V . Since
I is a left ideal, we have AI = I, so that AIV ⊆ IV . It follows that the subspace IV ⊆ V is A-invariant, so
that the projection e also belongs to the commutant A′. We have proven the following:

Proposition 1. Let A be a von Neumann algebra and let I ⊆ A be a ∗-ideal which is ultraweakly closed.
Then there exists a central Hermitian element e ∈ A such that e2 = e and I = eA = Ae = eAe. It follows
that A decomposes as a product I × J , where J = (1− e)A = A(1− e) = (1− e)A(1− e).

Now suppose that A is a nonunital C∗-algebra. We can always enlarge A to a unital C∗-algebra Ã by
adding a unit. We then have an exact sequence (of nonunital ∗-algebra homomorphisms)

0→ A→ Ã
φ→ C→ 0.

This gives an exact sequence of Banach spaces

0→ A∨∨ → Ã∨∨ → C→ 0.

We may therefore identify A∨∨ with the kernel of the von Neumann algebra homomorphism ψ : E(Ã) '
Ã∨∨ → C determined by φ. The analysis of Example ?? implies that this homomorphism determines von
Neumann algebra isomorphism E(Ã) ' C × I, where I = ker(ψ). As a Banach space, I is isomorphic to
A∨∨.

We can summarize the situation as follows. The category of representations of A as a nonunital C∗-algebra
is equivalent to the category of representations of Ã as a unital C∗-algebra, which is in turn equivalent to
the category of representations of the von Neumann algebra E(Ã) ' A∨∨ × C. The splitting reflects the
fact that every nonunital representation V of A admits a canonical decomposition V ' AV ⊕ V0, where AV
is a nondegenerate representation of A and V0 is a trivial representation of A (that is, every element of A
annihilates V0). We have proven:

Theorem 2. Let A be a nonunital C∗-algebra. Then the double dual A∨∨ admits the structure of a von
Neumann algebra. Moreover, there is a (nonunital) ∗-algebra homomorphism A → A∨∨ which determines
an equivalence from the category of von Neumann algebra representations of A∨∨ to the category of nonde-
generate representations of A.

Example 3. Let V be a Hilbert space and let K(V ) ⊆ B(V ) denote the space of compact operators on V .
Then K(V ) is a ∗-ideal in B(V ) which is closed in the norm topology. It is therefore a nonunital C∗-algebra
(which has a unit if and only if V is finite dimensional). The trace pairing

Btc(V )×B(V )→ C
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(f, g) 7→ tr(fg)

restricts to a pairing Btc(V ) × K(V ) → C, which determines a map Btc(V ) → K(V )∨. Since K(V ) is
ultrastrongly dense in B(V ) this map is actually an isometry onto its image. With more effort, one can show
that it is surjective: that is, we have isomorphisms

Btc(V ) ' K(V )∨ B(V ) ' Btc(V )∨.

Taken together, we get an isomorphism B(V ) ' K(V )∨∨, which exhibits B(V ) as the envelope of the
(nonunital) C∗-algebra B(V ).

We will need a generalization of Proposition 1, which describes ultraweakly closed left and right ideals
in a von Neumann algebra A. First, we need a bit of a digression. Suppose we are given a von Neumann
algebra A ⊆ B(V ) containing two operators f and g with f∗f = g∗g. Then, for each vector v ∈ V , we have

(fv, fv) = (f∗fv, v) = (g∗gv) = (gv, gv).

It follows that there is a well-defined, isometric map u0 : fV → gV , given by u(fv) = gv. This map extends
to an isometry fV → gV . It follows that there exists a unique map u : V → V which coincides with u0 on
fV and vanishes on (fV )⊥. The map u is a partial isometry: that is, it factors as a composition

V → fV → gV ,

where the first map is orthogonal projection onto a subspace of V and the second map is an isometry. This
is equivalent to the assertion that uu∗ and u∗u are both projection operators on V (exercise).

Suppose that T ∈ B(V ) is an operator belonging to the commutant A′. If v ∈ (fV )⊥, then

(fw, Tv) = (T ∗fw, v) = (fT ∗w, v) = 0

for all w ∈ V , so that Tv ∈ (fV )⊥. It follows that

u(Tv) = 0 = Tu(v).

We also have
uTf(v) = ufT (v) = gT (v) = Tg(v) = Tuf(v).

It follows that Tu = uT . Since this is true for all T ∈ A′, we conclude that u ∈ A′′ = A. We have proven:

Proposition 4. Let A be a von Neumann algebra containing elements f and g with f∗f = g∗g. Then A
contains a partial isometry u satisfying uf = g.

Corollary 5 (Polar Decomposition). Let A be a von Neumann algebra containing an element f . Then f
admits a decomposition f = u|f |, where u is a partial isometry and |f | denotes the unique positive square
root of f∗f .

Corollary 6. Let A ⊆ B(V ) be a von Neumann algebra and let I be an ultraweakly closed left ideal. Then
I = Ae for some projection e.

Proof. Consider the intersection A0 = I ∩ I∗. If x, y ∈ A0, then xy ∈ xI ⊆ I and xy ∈ I∗y ⊆ I∗, so that
xy ∈ A0. It follows that A0 is a nonunital ∗-subalgebra of B(V ), which is closed in the ultraweak topology.
We can therefore write V as an orthogonal direct sum V0 ⊕ V1, where A0V0 = 0 and V1 is a nondegenerate
representation of A0. Let e ∈ B(V ) denote the operator given by orthogonal projection onto V1; it follows
from the nonunital version of von Neumann’s theorem that e ∈ A0. In particular, we deduce that e ∈ I so
that Ae ⊆ I. We claim that equality holds. To prove this, consider an arbitrary element x ∈ I. Then x∗x
belongs to I ∩ I∗ = A0. Since A0 is a C∗-algebra (in fact a von Neumann algebra) in its own right, x∗x has
a unique positive square root in A0, which we will denote by |x|. Then |x| = |x|e. The polar decomposition
of x gives x = u|x| for some partial isometry u ∈ A. Then x = u|x| = u|x|e ∈ Ae, as desired.
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The projection e appearing in Corollary 6 is uniquely determined by the ideal I. To see this, let us use
the notation eW to denote orthogonal projection onto a closed subspace W ⊆ V . If A contains eW , then
AeW is an ultraweakly closed left ideal in A (it is the kernel of the map given by right multiplication by
1 − eW = eW⊥). Note that a projection eW ′ belongs to AeW if and only if eW ′ = eW ′eW : that is, if and
only if W ′ ⊆ W . We may therefore characterize eW as the “largest” projection which belongs to the ideal
AeW . We have proven the following.

Corollary 7. Let A ⊆ B(V ) be a von Neumann algebra. There is an order-preserving, one-to-one corre-
spondence between ultraweakly closed left ideals of A and closed subspaces W ⊆ V such that eW ∈ A. The
correspondence is given by W 7→ AeW .

Corollary 8. Let A ⊆ B(V ) be a von Neumann algebra and let I = AeW be an ultraweakly closed left ideal
in A. The following conditions are equivalent:

(1) The ideal I is a right ideal.

(2) The projection eW belongs to the center of A.

(3) The ideal I is a ∗-ideal.

Proof. We have already seen that (3) ⇒ (2). If eW is central then AeW = eWA is a right ideal, so that
(2)⇒ (1). If I is a right ideal, then I∗ = eWA ⊆ I, so that I is a ∗-ideal; this proves (1)⇒ (3).

Theorem 9. Let A be a C∗-algebra. Suppose there exists a Banach spaceM and a Banach space isomorphism
A 'M∨. Assume further:

(∗) For each a ∈ A, left and right multiplication by a are continuous with respect to the weak ∗-topology.

Then A is isomorphic to a von Neumann algebra.

Remark 10. In the statement of Theorem 9, assumption (∗) is actually unnecessary: just knowing that A
admits a Banach space predual guarantees that A is isomorphic to a von Neumann algebra.

Proof. For every continuous linear map φ : A→M∨, there is an adjoint map φ′ : M → A∨, which dualizes to
give a map of Banach spaces φ̂ : A∨∨ →M∨. The map φ̂ is continuous with respect to the weak ∗-topologies
on A∨∨ and M∨, respectively, and fits into a commutative diagram

A
φ //

""

M∨

A∨∨.

φ̂

;;

Moreover, φ̂ is uniquely determined by these properties (since A is dense in A∨∨ with respect to the weak
∗-topology).

Let us identify A with M∨ and take φ to be the identity map. We then obtain a map of Banach spaces
r : A∨∨ → A, which is the identity on A. Let us denote the kernel of r by K ⊆ A∨∨. We have seen that
A∨∨ has the structure of a von Neumann algebra, and that the weak ∗-topology on A∨∨ coincides with the
ultraweak topology. It follows that K ⊆ A∨∨ is ultraweakly closed.

Let ma : A→ A be the map given by left multiplication by an element a ∈ A, and let m̂a : A∨∨ → A∨∨

be given by left multiplication by the image of A. Consider the diagram

A∨∨
r //

m̂a

��

A

ma

��
A∨∨

r // A.

3



Using assumption (∗), we see that all of the maps appearing in this diagram are weak ∗-continuous. The
diagram commutes when restricted to the image of A in A∨∨. Since this image is weak ∗-dense, we see
that the diagram commutes. That is, r commutes with left multiplication by a ∈ A. It follows that for
b ∈ K = ker(r), we have ab ∈ K. The function a 7→ ab is ultraweakly continuous, and K is ultraweakly
closed. It follows that ab ∈ K for all a ∈ A∨∨: that is, Ab ∈ K. Since b ∈ K was arbitrary, we conclude
that K is a left ideal in A∨∨. The same argument proves that K is a right ideal in A∨∨, and therefore an
ultraweakly closed ∗-ideal in A∨∨ (Corollary 8). It follows that the quotient A∨∨/K inherits the structure
of a von Neumann algebra (it is actually a direct factor of A∨∨). We have a map of ∗-algebras

A→ A∨∨ → A∨∨/K

which is an isomorphism at the level of vector spaces, and therefore a C∗-algebra isomorphism.
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