Math 261y: von Neumann Algebras (Lecture 9)

September 20, 2011

Let us begin this lecture by continuing the analysis of ideals in von Neumann algebras. Let A be a von Neumann algebra and let $I \subseteq A \subseteq B(V)$ be an ultraweakly closed $*$-ideal. We saw in the last lecture that I can be regarded as a von Neumann algebra acting on the Hilbert space $\overline{I V} \subseteq V$. In particular, the identity element of I corresponds, in $B(V)$, to the orthogonal projection e onto the closed subspace $\overline{I V} \subseteq V$. Since I is a left ideal, we have $A I=I$, so that $A I V \subseteq I V$. It follows that the subspace $\overline{I V} \subseteq V$ is A-invariant, so that the projection e also belongs to the commutant A^{\prime}. We have proven the following:

Proposition 1. Let A be a von Neumann algebra and let $I \subseteq A$ be a *-ideal which is ultraweakly closed. Then there exists a central Hermitian element $e \in A$ such that $e^{2}=e$ and $I=e A=A e=e A e$. It follows that A decomposes as a product $I \times J$, where $J=(1-e) A=A(1-e)=(1-e) A(1-e)$.

Now suppose that A is a nonunital C^{*}-algebra. We can always enlarge A to a unital C^{*}-algebra \widetilde{A} by adding a unit. We then have an exact sequence (of nonunital $*$-algebra homomorphisms)

$$
0 \rightarrow A \rightarrow \widetilde{A} \xrightarrow{\text { }} \mathbf{C} \rightarrow 0 .
$$

This gives an exact sequence of Banach spaces

$$
0 \rightarrow A^{\vee \vee} \rightarrow \tilde{A}^{\vee \vee} \rightarrow \mathbf{C} \rightarrow 0 .
$$

We may therefore identify $A^{\vee \vee}$ with the kernel of the von Neumann algebra homomorphism $\psi: E(\widetilde{A}) \simeq$ $\widetilde{A}^{\vee \vee} \rightarrow \mathbf{C}$ determined by ϕ. The analysis of Example ?? implies that this homomorphism determines von Neumann algebra isomorphism $E(\widetilde{A}) \simeq \mathbf{C} \times I$, where $I=\operatorname{ker}(\psi)$. As a Banach space, I is isomorphic to $A^{\vee V}$.

We can summarize the situation as follows. The category of representations of A as a nonunital C^{*}-algebra is equivalent to the category of representations of \widetilde{A} as a unital C^{*}-algebra, which is in turn equivalent to the category of representations of the von Neumann algebra $E(\widetilde{A}) \simeq A^{\vee V} \times \mathbf{C}$. The splitting reflects the fact that every nonunital representation V of A admits a canonical decomposition $V \simeq \overline{A V} \oplus V_{0}$, where $\overline{A V}$ is a nondegenerate representation of A and V_{0} is a trivial representation of A (that is, every element of A annihilates V_{0}). We have proven:

Theorem 2. Let A be a nonunital C^{*}-algebra. Then the double dual $A^{\vee \vee}$ admits the structure of a von Neumann algebra. Moreover, there is a (nonunital) *-algebra homomorphism $A \rightarrow A^{\vee \vee}$ which determines an equivalence from the category of von Neumann algebra representations of $A^{\vee \vee}$ to the category of nondegenerate representations of A.
Example 3. Let V be a Hilbert space and let $K(V) \subseteq B(V)$ denote the space of compact operators on V. Then $K(V)$ is a $*$-ideal in $B(V)$ which is closed in the norm topology. It is therefore a nonunital C^{*}-algebra (which has a unit if and only if V is finite dimensional). The trace pairing

$$
B^{\mathrm{tc}}(V) \times B(V) \rightarrow \mathbf{C}
$$

$$
(f, g) \mapsto \operatorname{tr}(f g)
$$

restricts to a pairing $B^{\text {tc }}(V) \times K(V) \rightarrow \mathbf{C}$, which determines a map $B^{\text {tc }}(V) \rightarrow K(V)^{\vee}$. Since $K(V)$ is ultrastrongly dense in $B(V)$ this map is actually an isometry onto its image. With more effort, one can show that it is surjective: that is, we have isomorphisms

$$
B^{\mathrm{tc}}(V) \simeq K(V)^{\vee} \quad B(V) \simeq B^{\mathrm{tc}}(V)^{\vee}
$$

Taken together, we get an isomorphism $B(V) \simeq K(V)^{\vee \vee}$, which exhibits $B(V)$ as the envelope of the (nonunital) C^{*}-algebra $B(V)$.

We will need a generalization of Proposition 1, which describes ultraweakly closed left and right ideals in a von Neumann algebra A. First, we need a bit of a digression. Suppose we are given a von Neumann algebra $A \subseteq B(V)$ containing two operators f and g with $f^{*} f=g^{*} g$. Then, for each vector $v \in V$, we have

$$
(f v, f v)=\left(f^{*} f v, v\right)=\left(g^{*} g v\right)=(g v, g v) .
$$

It follows that there is a well-defined, isometric map $u_{0}: f V \rightarrow g V$, given by $u(f v)=g v$. This map extends to an isometry $\overline{f V} \rightarrow \overline{g V}$. It follows that there exists a unique map $u: V \rightarrow V$ which coincides with u_{0} on $f V$ and vanishes on $(f V)^{\perp}$. The map u is a partial isometry: that is, it factors as a composition

$$
V \rightarrow \overline{f V} \rightarrow \overline{g V}
$$

where the first map is orthogonal projection onto a subspace of V and the second map is an isometry. This is equivalent to the assertion that $u u^{*}$ and $u^{*} u$ are both projection operators on V (exercise).

Suppose that $T \in B(V)$ is an operator belonging to the commutant A^{\prime}. If $v \in(f V)^{\perp}$, then

$$
(f w, T v)=\left(T^{*} f w, v\right)=\left(f T^{*} w, v\right)=0
$$

for all $w \in V$, so that $T v \in(f V)^{\perp}$. It follows that

$$
u(T v)=0=T u(v) .
$$

We also have

$$
u T f(v)=u f T(v)=g T(v)=T g(v)=T u f(v)
$$

It follows that $T u=u T$. Since this is true for all $T \in A^{\prime}$, we conclude that $u \in A^{\prime \prime}=A$. We have proven:
Proposition 4. Let A be a von Neumann algebra containing elements f and g with $f^{*} f=g^{*} g$. Then A contains a partial isometry u satisfying $u f=g$.

Corollary 5 (Polar Decomposition). Let A be a von Neumann algebra containing an element f. Then f admits a decomposition $f=u|f|$, where u is a partial isometry and $|f|$ denotes the unique positive square root of $f^{*} f$.

Corollary 6. Let $A \subseteq B(V)$ be a von Neumann algebra and let I be an ultraweakly closed left ideal. Then $I=A e$ for some projection e.

Proof. Consider the intersection $A_{0}=I \cap I^{*}$. If $x, y \in A_{0}$, then $x y \in x I \subseteq I$ and $x y \in I^{*} y \subseteq I^{*}$, so that $x y \in A_{0}$. It follows that A_{0} is a nonunital $*$-subalgebra of $B(V)$, which is closed in the ultraweak topology. We can therefore write V as an orthogonal direct sum $V_{0} \oplus V_{1}$, where $A_{0} V_{0}=0$ and V_{1} is a nondegenerate representation of A_{0}. Let $e \in B(V)$ denote the operator given by orthogonal projection onto V_{1}; it follows from the nonunital version of von Neumann's theorem that $e \in A_{0}$. In particular, we deduce that $e \in I$ so that $A e \subseteq I$. We claim that equality holds. To prove this, consider an arbitrary element $x \in I$. Then $x^{*} x$ belongs to $I \cap I^{*}=A_{0}$. Since A_{0} is a C^{*}-algebra (in fact a von Neumann algebra) in its own right, $x^{*} x$ has a unique positive square root in A_{0}, which we will denote by $|x|$. Then $|x|=|x| e$. The polar decomposition of x gives $x=u|x|$ for some partial isometry $u \in A$. Then $x=u|x|=u|x| e \in A e$, as desired.

The projection e appearing in Corollary 6 is uniquely determined by the ideal I. To see this, let us use the notation e_{W} to denote orthogonal projection onto a closed subspace $W \subseteq V$. If A contains e_{W}, then $A e_{W}$ is an ultraweakly closed left ideal in A (it is the kernel of the map given by right multiplication by $\left.1-e_{W}=e_{W^{\perp}}\right)$. Note that a projection $e_{W^{\prime}}$ belongs to $A e_{W}$ if and only if $e_{W^{\prime}}=e_{W^{\prime}} e_{W}$: that is, if and only if $W^{\prime} \subseteq W$. We may therefore characterize e_{W} as the "largest" projection which belongs to the ideal $A e_{W}$. We have proven the following.

Corollary 7. Let $A \subseteq B(V)$ be a von Neumann algebra. There is an order-preserving, one-to-one correspondence between ultraweakly closed left ideals of A and closed subspaces $W \subseteq V$ such that $e_{W} \in A$. The correspondence is given by $W \mapsto A e_{W}$.

Corollary 8. Let $A \subseteq B(V)$ be a von Neumann algebra and let $I=A e_{W}$ be an ultraweakly closed left ideal in A. The following conditions are equivalent:
(1) The ideal I is a right ideal.
(2) The projection e_{W} belongs to the center of A.
(3) The ideal I is a *-ideal.

Proof. We have already seen that $(3) \Rightarrow(2)$. If e_{W} is central then $A e_{W}=e_{W} A$ is a right ideal, so that $(2) \Rightarrow(1)$. If I is a right ideal, then $I^{*}=e_{W} A \subseteq I$, so that I is a $*$-ideal; this proves $(1) \Rightarrow(3)$.

Theorem 9. Let A be a C^{*}-algebra. Suppose there exists a Banach space M and a Banach space isomorphism $A \simeq M^{\vee}$. Assume further:
(*) For each $a \in A$, left and right multiplication by a are continuous with respect to the weak $*$-topology.
Then A is isomorphic to a von Neumann algebra.
Remark 10. In the statement of Theorem 9, assumption (*) is actually unnecessary: just knowing that A admits a Banach space predual guarantees that A is isomorphic to a von Neumann algebra.

Proof. For every continuous linear map $\phi: A \rightarrow M^{\vee}$, there is an adjoint map $\phi^{\prime}: M \rightarrow A^{\vee}$, which dualizes to give a map of Banach spaces $\hat{\phi}: A^{\vee \vee} \rightarrow M^{\vee}$. The map $\hat{\phi}$ is continuous with respect to the weak $*$-topologies on $A^{\vee \vee}$ and M^{\vee}, respectively, and fits into a commutative diagram

Moreover, $\hat{\phi}$ is uniquely determined by these properties (since A is dense in $A^{\vee \vee}$ with respect to the weak *-topology).

Let us identify A with M^{\vee} and take ϕ to be the identity map. We then obtain a map of Banach spaces $r: A^{\vee \vee} \rightarrow A$, which is the identity on A. Let us denote the kernel of r by $K \subseteq A^{\vee \vee}$. We have seen that $A^{\vee \vee}$ has the structure of a von Neumann algebra, and that the weak *-topology on $A^{\vee \vee}$ coincides with the ultraweak topology. It follows that $K \subseteq A^{\vee \vee}$ is ultraweakly closed.

Let $m_{a}: A \rightarrow A$ be the map given by left multiplication by an element $a \in A$, and let $\widehat{m}_{a}: A^{\vee \vee} \rightarrow A^{\vee \vee}$ be given by left multiplication by the image of A. Consider the diagram

Using assumption $(*)$, we see that all of the maps appearing in this diagram are weak $*$-continuous. The diagram commutes when restricted to the image of A in $A^{\vee \vee}$. Since this image is weak $*$-dense, we see that the diagram commutes. That is, r commutes with left multiplication by $a \in A$. It follows that for $b \in K=\operatorname{ker}(r)$, we have $a b \in K$. The function $a \mapsto a b$ is ultraweakly continuous, and K is ultraweakly closed. It follows that $a b \in K$ for all $a \in A^{\vee \vee}$: that is, $A b \in K$. Since $b \in K$ was arbitrary, we conclude that K is a left ideal in $A^{\vee \vee}$. The same argument proves that K is a right ideal in $A^{\vee \vee}$, and therefore an ultraweakly closed $*$-ideal in $A^{\vee \vee}$ (Corollary 8). It follows that the quotient $A^{\vee \vee} / K$ inherits the structure of a von Neumann algebra (it is actually a direct factor of $A^{\vee \vee}$). We have a map of $*$-algebras

$$
A \rightarrow A^{\vee \vee} \rightarrow A^{\vee \vee} / K
$$

which is an isomorphism at the level of vector spaces, and therefore a C^{*}-algebra isomorphism.

