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September 15, 2011

Let V be a Hilbert space. In the last lecture, we defined the subspace Btc(V ) ⊆ B(V ) of trace-class
operators: an operator is trace-class if it has the form

u 7→
∑

(u,wi)vi

where
∑
||vi||2 <∞ and

∑
||wi||2 <∞. To such an operator we can associate a well-defined trace

∑
(vi, wi),

and the trace pairing (f, g) 7→ tr(fg) determines an isometric isomorphism of B(V ) with the dual Btc(V )∨.
For any Banach space W , the dual space W∨ inherits a topology, called the weak ∗-topology: it is the

coarsest topology for which the linear functionals µ 7→ µ(w) are continuous, for each w ∈ W . Taking
W = Btr(V ) (so that W∨ ' B(V )), we obtain a topology on the operator algebra B(V ). Using Remark ??,
we see that this is the coarsest topology for which the functionals

f 7→
∑
i

(f(vi), wi)

are continuous, for all sequences of vectors vi and wi satisfying∑
||vi||2 <∞

∑
||wi||2 <∞.

It follows that the weak ∗-topology on B(V ) coincides with the ultraweak topology introduced in Lecture 5.

Corollary 1. Let A ⊆ B(V ) be a von Neumann algebra. Then there exists an isometry A 'W∨, for some
Banach space W .

Since A is closed in the ultraweak topology on B(V ) (which coincides with the weak ∗-topology), this
follows from the following more general claim:

Proposition 2. Let M be a Banach space and let A ⊆ M∨ be a subspace which is closed in the weak
∗-topology. Then A 'W∨ for some Banach space W .

Proof. Take K to be the subspace of M given by the kernel of those functionals belonging to A, and let
W = M/K. We have an exact sequence of Banach spaces

0→ K →M →W → 0

which gives an exact sequence of dual spaces

0→W∨ →M∨ → K∨ → 0.

It will therefore suffice to show that A = ker(M∨ → K∨): that is, that a linear functional f ∈ M∨ belongs
to A if and only if it vanishes on K. Let µ : M → C be a continuous functional which vanishes on K; we
wish to show that µ ∈ A. For this, it suffices to show that µ belongs to the weak ∗-closure of A. That is,

1



we must show that for every sequence of elements x1, . . . , xn ∈M and every ε > 0, there exists µ′ ∈ A such
that

|µ(xi)− µ′(xi)| < ε

for each xi. In fact, we claim that we can choose µ′ such that µ(xi) = µ′(xi). For this, let us consider the
map

T : M∨ → Rn

given by µ′ 7→ (µ′(x1), µ′(x2), . . . , µ′(xn)). If T (µ) /∈ T (A), then there exists a linear functional on Rn which
vanishes on T (A) but not on T (µ). This linear functional is given by some linear combination ~x =

∑
λixi.

Then ~x ∈ K but µ(x) 6= 0, contradicting our assumption on µ.

We will later show that the Banach space W appearing in Corollary 1 is unique. The isomorphism
A 'W∨ allows us to regard A as equipped with the weak ∗-topology, which will coincide with the restriction
of the ultraweak topology on B(V ).

Definition 3. Let A ⊆ B(V ) and A′ ⊆ B(V ′) be von Neumann algebras. A morphism of von Neumann
algebras from A to A′ is a ∗-algebra homomorphism φ : A → A′ which is continuous for the ultraweak
topologies.

A von Neumann algebra representation of A ⊆ B(V ) is a von Neumann algebra homomorphism ρ : A→
B(W ), for some Hilbert space W . That is, a von Neumann algebra representation is an action of A on a
Hilbert space W satisfying the condition that

(av, w) = (v, a∗w)

and that the map

a 7→
∑

(avi, wi)

is continuous for the ultraweak topology on A, whenever vi, wi ∈W are vectors satisfying
∑
||vi||2 <∞ and∑

||wi||2 <∞. We will refer to this last condition as ultraweak continuity.

Our goal in this lecture is to prove the following:

Theorem 4. Let A ⊆ B(V ) be a von Neumann algebra, and suppose we are given a representation W of
the underlying C∗-algebra of A. Then W is a von Neumann algebra representation of A if and only if it can
be obtained as a direct summand of a (possibly infinite) direct sum of copies of V .

In other words, a von Neumann algebra A ⊆ B(V ) has essentially only one representation V : all other
representations can be obtained from V by means of obvious operations.

Definition 5. Let A be a C∗-algebra. A representation V of A is said to be cyclic if there exists a vector
v ∈ V such that Av is dense in V .

Proposition 6. Let A be an arbitrary C∗-algebra. Then every representation V of A can be obtained as an
orthogonal direct sum of cyclic representations.

Proof. Let S denote the collection of all closed subspaces of V which are A-invariant and cyclic. Let T be
the collection of all subsets S0 = {Vα} of S which are mutually orthogonal: that is, Vα is orthogonal to
Vβ for every pair of distinct elements Vα, Vβ ∈ S0. We regard T as a partially ordered set with respect to
inclusions. Using Zorn’s lemma, we see that T contains a maximal element S0. Let W denote the closed
subspace of V generated by the subspaces Vα ∈ S0. If W = V , we are done. Otherwise, we can choose a
vector v ∈ V belonging to the orthogonal complement of W . Since V is a ∗-representation of A, we see that
the entire orbit Av is orthogonal to W . It follows that S0∪{Av} belongs to T , contradicting the maximality
of S0.

Using Proposition 6, we can reduce Theorem 4 to the following assertion:
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Proposition 7. Let A ⊆ B(V ) be a von Neumann algebra, and let W be a cyclic von Neumann algebra
representation of A. Then W is isomorphic to a direct summand of the countable orthogonal direct sum
V ⊕∞ = V ⊕ V ⊕ · · · .

Fix a cyclic vector w ∈W , so that Aw is dense in W . Since W is a von Neumann algebra representation,
the functional µ : A → C given by µ(a) = (aw,w)W is continuous for the ultraweak topology. We may
therefore write

µ(a) =
∑

(avi, v
′
i)V

for some elements vi, v
′
i ∈ V satisfying∑

||vi||2 <∞
∑
||v′i||2 <∞.

Let us regard the sequences {vi} and {v′i} as elements of the direct sum V ⊕∞. Replacing A by its image in
B(V ⊕∞), we are reduced to proving the following:

Proposition 8. Let A ⊆ B(V ) be a von Neumann algebra. Let W be a representation of A with a cyclic
vector w, let µ : A → C be given by µ(a) = (aw,w)W , and suppose there exist vectors v, v′ ∈ V with
µ(a) = (av, v′)V . Then W is isomorphic (as a representation of A) to a direct summand of the Hilbert space
V .

Let us first indulge in a slight digression. Let A be any C∗-algebra acting on a Hilbert space W , and let
w ∈ W be a unit vector. We have seen that the map µ : A → C given by µ(a) = (aw,w) is a state on A.
Given this state, we can construct a representation Vµ by completing A with respect to the inner product
〈a, b〉 = µ(b∗a). The construction a 7→ aw then extends to an isometric embedding Vµ → W , and therefore
gives a direct sum decomposition W ' Vµ⊕V ⊥µ . If w ∈W is a cyclic vector, we get an isomorphism W ' Vµ.

To prove Proposition 8, we may assume without loss of generality that w ∈ W is a unit vector, so that
µ is a state W ' Vµ by the analysis given above. To realize W as a direct summand of V , it will suffice to
find a vector u ∈ V such that µ(a) = (au, u)V .

Note that µ is a positive linear functional: that is, we have µ(a) ≥ 0 whenever a ∈ A is a positive element.
To prove this, we can write a = b∗b, so that µ(a) = (b∗bw,w)W = (bw, bw)W ≥ 0. For each positive element
a ∈ A, we have

µ(a) ≤ µ(a) +
1

4
(a(v − v′), v − v′)V

= µ(a) +
1

4
(av, v)V +

1

4
(av′, v′)V −

1

4
(av, v′)V −

1

4
(av′, v)V .

Since a is Hermitian, we have (av′, v) = (v′, av) = (av, v′) = µ(a) = µ(a). We therefore obtain

µ(a) ≤ µ(a) +
1

4
(av, v)V +

1

4
(av′, v′)V −

1

4
µ(a)− 1

4
µ(a)

=
1

4
(av, v)V +

1

4
(av′, v′)V +

1

4
(av, v′) +

1

4
(av′, v)

=
1

4
(a(v + v′), v + v′).

Since µ is positive, the construction µ(b∗a) determines an inner product on A. The Cauchy-Schwartz
inequality then gives

µ(b∗a)2 ≤ µ(b∗b)µ(a∗a) ≤ 1

16
(b∗b(v+v′), v+v′)V (a∗a(v+v′), v+v′)V =

1

16
(b(v+v′), b(v+v′))V (a(v+v′), a(v+v′))V .

Equivalently, we have

µ(b∗a) ≤ 1

4
||b(v + v′)|| ||a(v + v′)||.
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Let V0 ⊆ V be the closure of A(v + v′). It follows from the above analysis that the formula

〈a(v + v′), b(v + v′)〉 = µ(b∗a)

extends continuously to an inner product 〈, 〉 : V0 × V0 → C satisfying 〈x, y〉 ≤ 1
4 ||x|| ||y||. For fixed x, the

map y 7→ 〈x, y〉 is a continuous antilinear functional of norm ≤ 1
4 ||x||, so that 〈x, y〉 = (f(x), y) for some

f(x) ∈ V0 with ||f(x)|| ≤ 1
4 ||x||. The map x 7→ f(x) is evidently linear, and has norm ≤ 1

4 . We conclude
that

µ(b∗a) = 〈a(v + v′), b(v + v′)〉 = (fa(v + v′), b(v + v′))V .

In particular, we get

(b∗fa(v + v′), c(v + v′))V = (fa(v + v′), bc(v + v′)) = µ(c∗b∗a) = (fb∗a(v + v′), c(v + v′))).

By continuity, we deduce that fb∗ and b∗f agree on the whole of V0, so that f ∈ B(V0) commutes with the
action of A. The operator f is evidently positive (since 〈, 〉 is positive semidefinite), so it admits a unique
positive square root f1/2 which also commutes with the action of A. We then have

µ(b∗a) = (fa(v + v′), b(v + v′))V = (af1/2(v + v′), bf1/2(v + v′)),

so that W is isomorphic to the cyclic subrepresentation of V generated by the vector f1/2(v + v′).
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