Math 261y: von Neumann Algebras (Lecture 7)

September 15, 2011

Let V be a Hilbert space. In the last lecture, we defined the subspace $B^{\mathrm{tc}}(V) \subseteq B(V)$ of trace-class operators: an operator is trace-class if it has the form

$$
u \mapsto \sum\left(u, w_{i}\right) v_{i}
$$

where $\sum\left\|v_{i}\right\|^{2}<\infty$ and $\sum\left\|w_{i}\right\|^{2}<\infty$. To such an operator we can associate a well-defined trace $\sum\left(v_{i}, w_{i}\right)$, and the trace pairing $(f, g) \mapsto \operatorname{tr}(f g)$ determines an isometric isomorphism of $B(V)$ with the dual $B^{\mathrm{tc}}(V)^{\vee}$.

For any Banach space W, the dual space W^{\vee} inherits a topology, called the weak $*$-topology: it is the coarsest topology for which the linear functionals $\mu \mapsto \mu(w)$ are continuous, for each $w \in W$. Taking $W=B^{\operatorname{tr}}(V)$ (so that $W^{\vee} \simeq B(V)$), we obtain a topology on the operator algebra $B(V)$. Using Remark ??, we see that this is the coarsest topology for which the functionals

$$
f \mapsto \sum_{i}\left(f\left(v_{i}\right), w_{i}\right)
$$

are continuous, for all sequences of vectors v_{i} and w_{i} satisfying

$$
\sum\left\|v_{i}\right\|^{2}<\infty \quad \sum\left\|w_{i}\right\|^{2}<\infty .
$$

It follows that the weak *-topology on $B(V)$ coincides with the ultraweak topology introduced in Lecture 5 .
Corollary 1. Let $A \subseteq B(V)$ be a von Neumann algebra. Then there exists an isometry $A \simeq W^{\vee}$, for some Banach space W.

Since A is closed in the ultraweak topology on $B(V)$ (which coincides with the weak $*$-topology), this follows from the following more general claim:
Proposition 2. Let M be a Banach space and let $A \subseteq M^{\vee}$ be a subspace which is closed in the weak *-topology. Then $A \simeq W^{\vee}$ for some Banach space W.

Proof. Take K to be the subspace of M given by the kernel of those functionals belonging to A, and let $W=M / K$. We have an exact sequence of Banach spaces

$$
0 \rightarrow K \rightarrow M \rightarrow W \rightarrow 0
$$

which gives an exact sequence of dual spaces

$$
0 \rightarrow W^{\vee} \rightarrow M^{\vee} \rightarrow K^{\vee} \rightarrow 0
$$

It will therefore suffice to show that $A=\operatorname{ker}\left(M^{\vee} \rightarrow K^{\vee}\right)$: that is, that a linear functional $f \in M^{\vee}$ belongs to A if and only if it vanishes on K. Let $\mu: M \rightarrow \mathbf{C}$ be a continuous functional which vanishes on K; we wish to show that $\mu \in A$. For this, it suffices to show that μ belongs to the weak $*$-closure of A. That is,
we must show that for every sequence of elements $x_{1}, \ldots, x_{n} \in M$ and every $\epsilon>0$, there exists $\mu^{\prime} \in A$ such that

$$
\left|\mu\left(x_{i}\right)-\mu^{\prime}\left(x_{i}\right)\right|<\epsilon
$$

for each x_{i}. In fact, we claim that we can choose μ^{\prime} such that $\mu\left(x_{i}\right)=\mu^{\prime}\left(x_{i}\right)$. For this, let us consider the map

$$
T: M^{\vee} \rightarrow \mathbb{R}^{n}
$$

given by $\mu^{\prime} \mapsto\left(\mu^{\prime}\left(x_{1}\right), \mu^{\prime}\left(x_{2}\right), \ldots, \mu^{\prime}\left(x_{n}\right)\right)$. If $T(\mu) \notin T(A)$, then there exists a linear functional on \mathbb{R}^{n} which vanishes on $T(A)$ but not on $T(\mu)$. This linear functional is given by some linear combination $\vec{x}=\sum \lambda_{i} x_{i}$. Then $\vec{x} \in K$ but $\mu(x) \neq 0$, contradicting our assumption on μ.

We will later show that the Banach space W appearing in Corollary 1 is unique. The isomorphism $A \simeq W^{\vee}$ allows us to regard A as equipped with the weak $*$-topology, which will coincide with the restriction of the ultraweak topology on $B(V)$.

Definition 3. Let $A \subseteq B(V)$ and $A^{\prime} \subseteq B\left(V^{\prime}\right)$ be von Neumann algebras. A morphism of von Neumann algebras from A to A^{\prime} is a $*$-algebra homomorphism $\phi: A \rightarrow A^{\prime}$ which is continuous for the ultraweak topologies.

A von Neumann algebra representation of $A \subseteq B(V)$ is a von Neumann algebra homomorphism $\rho: A \rightarrow$ $B(W)$, for some Hilbert space W. That is, a von Neumann algebra representation is an action of A on a Hilbert space W satisfying the condition that

$$
(a v, w)=\left(v, a^{*} w\right)
$$

and that the map

$$
a \mapsto \sum\left(a v_{i}, w_{i}\right)
$$

is continuous for the ultraweak topology on A, whenever $v_{i}, w_{i} \in W$ are vectors satisfying $\sum\left\|v_{i}\right\|^{2}<\infty$ and $\sum\left\|w_{i}\right\|^{2}<\infty$. We will refer to this last condition as ultraweak continuity.

Our goal in this lecture is to prove the following:
Theorem 4. Let $A \subseteq B(V)$ be a von Neumann algebra, and suppose we are given a representation W of the underlying C^{*}-algebra of A. Then W is a von Neumann algebra representation of A if and only if it can be obtained as a direct summand of a (possibly infinite) direct sum of copies of V.

In other words, a von Neumann algebra $A \subseteq B(V)$ has essentially only one representation V : all other representations can be obtained from V by means of obvious operations.

Definition 5. Let A be a C^{*}-algebra. A representation V of A is said to be cyclic if there exists a vector $v \in V$ such that $A v$ is dense in V.

Proposition 6. Let A be an arbitrary C^{*}-algebra. Then every representation V of A can be obtained as an orthogonal direct sum of cyclic representations.

Proof. Let S denote the collection of all closed subspaces of V which are A-invariant and cyclic. Let T be the collection of all subsets $S_{0}=\left\{V_{\alpha}\right\}$ of S which are mutually orthogonal: that is, V_{α} is orthogonal to V_{β} for every pair of distinct elements $V_{\alpha}, V_{\beta} \in S_{0}$. We regard T as a partially ordered set with respect to inclusions. Using Zorn's lemma, we see that T contains a maximal element S_{0}. Let W denote the closed subspace of V generated by the subspaces $V_{\alpha} \in S_{0}$. If $W=V$, we are done. Otherwise, we can choose a vector $v \in V$ belonging to the orthogonal complement of W. Since V is a *-representation of A, we see that the entire orbit $A v$ is orthogonal to W. It follows that $S_{0} \cup\{\overline{A v}\}$ belongs to T, contradicting the maximality of S_{0}.

Using Proposition 6, we can reduce Theorem 4 to the following assertion:

Proposition 7. Let $A \subseteq B(V)$ be a von Neumann algebra, and let W be a cyclic von Neumann algebra representation of A. Then W is isomorphic to a direct summand of the countable orthogonal direct sum $V^{\oplus \infty}=V \oplus V \oplus \cdots$.

Fix a cyclic vector $w \in W$, so that $A w$ is dense in W. Since W is a von Neumann algebra representation, the functional $\mu: A \rightarrow \mathbf{C}$ given by $\mu(a)=(a w, w)_{W}$ is continuous for the ultraweak topology. We may therefore write

$$
\mu(a)=\sum\left(a v_{i}, v_{i}^{\prime}\right)_{V}
$$

for some elements $v_{i}, v_{i}^{\prime} \in V$ satisfying

$$
\sum\left\|v_{i}\right\|^{2}<\infty \quad \sum\left\|v_{i}^{\prime}\right\|^{2}<\infty
$$

Let us regard the sequences $\left\{v_{i}\right\}$ and $\left\{v_{i}^{\prime}\right\}$ as elements of the direct sum $V^{\oplus \infty}$. Replacing A by its image in $B\left(V^{\oplus \infty}\right)$, we are reduced to proving the following:

Proposition 8. Let $A \subseteq B(V)$ be a von Neumann algebra. Let W be a representation of A with a cyclic vector w, let $\mu: A \rightarrow \mathbf{C}$ be given by $\mu(a)=(a w, w)_{W}$, and suppose there exist vectors $v, v^{\prime} \in V$ with $\mu(a)=\left(a v, v^{\prime}\right)_{V}$. Then W is isomorphic (as a representation of A) to a direct summand of the Hilbert space V.

Let us first indulge in a slight digression. Let A be any C^{*}-algebra acting on a Hilbert space W, and let $w \in W$ be a unit vector. We have seen that the map $\mu: A \rightarrow \mathbf{C}$ given by $\mu(a)=(a w, w)$ is a state on A. Given this state, we can construct a representation V_{μ} by completing A with respect to the inner product $\langle a, b\rangle=\mu\left(b^{*} a\right)$. The construction $a \mapsto a w$ then extends to an isometric embedding $V_{\mu} \rightarrow W$, and therefore gives a direct sum decomposition $W \simeq V_{\mu} \oplus V_{\mu}^{\perp}$. If $w \in W$ is a cyclic vector, we get an isomorphism $W \simeq V_{\mu}$.

To prove Proposition 8, we may assume without loss of generality that $w \in W$ is a unit vector, so that μ is a state $W \simeq V_{\mu}$ by the analysis given above. To realize W as a direct summand of V, it will suffice to find a vector $u \in V$ such that $\mu(a)=(a u, u)_{V}$.

Note that μ is a positive linear functional: that is, we have $\mu(a) \geq 0$ whenever $a \in A$ is a positive element. To prove this, we can write $a=b^{*} b$, so that $\mu(a)=\left(b^{*} b w, w\right)_{W}=(b w, b w)_{W} \geq 0$. For each positive element $a \in A$, we have

$$
\begin{aligned}
\mu(a) & \leq \mu(a)+\frac{1}{4}\left(a\left(v-v^{\prime}\right), v-v^{\prime}\right)_{V} \\
& =\mu(a)+\frac{1}{4}(a v, v)_{V}+\frac{1}{4}\left(a v^{\prime}, v^{\prime}\right)_{V}-\frac{1}{4}\left(a v, v^{\prime}\right)_{V}-\frac{1}{4}\left(a v^{\prime}, v\right)_{V}
\end{aligned}
$$

Since a is Hermitian, we have $\left(a v^{\prime}, v\right)=\left(v^{\prime}, a v\right)=\overline{\left(a v, v^{\prime}\right)}=\overline{\mu(a)}=\mu(a)$. We therefore obtain

$$
\begin{aligned}
\mu(a) & \leq \mu(a)+\frac{1}{4}(a v, v)_{V}+\frac{1}{4}\left(a v^{\prime}, v^{\prime}\right)_{V}-\frac{1}{4} \mu(a)-\frac{1}{4} \mu(a) \\
& =\frac{1}{4}(a v, v)_{V}+\frac{1}{4}\left(a v^{\prime}, v^{\prime}\right)_{V}+\frac{1}{4}\left(a v, v^{\prime}\right)+\frac{1}{4}\left(a v^{\prime}, v\right) \\
& =\frac{1}{4}\left(a\left(v+v^{\prime}\right), v+v^{\prime}\right)
\end{aligned}
$$

Since μ is positive, the construction $\mu\left(b^{*} a\right)$ determines an inner product on A. The Cauchy-Schwartz inequality then gives
$\mu\left(b^{*} a\right)^{2} \leq \mu\left(b^{*} b\right) \mu\left(a^{*} a\right) \leq \frac{1}{16}\left(b^{*} b\left(v+v^{\prime}\right), v+v^{\prime}\right)_{V}\left(a^{*} a\left(v+v^{\prime}\right), v+v^{\prime}\right)_{V}=\frac{1}{16}\left(b\left(v+v^{\prime}\right), b\left(v+v^{\prime}\right)\right)_{V}\left(a\left(v+v^{\prime}\right), a\left(v+v^{\prime}\right)\right)_{V}$.
Equivalently, we have

$$
\mu\left(b^{*} a\right) \leq \frac{1}{4}\left\|b\left(v+v^{\prime}\right)\right\|\left\|a\left(v+v^{\prime}\right)\right\|
$$

Let $V_{0} \subseteq V$ be the closure of $A\left(v+v^{\prime}\right)$. It follows from the above analysis that the formula

$$
\left\langle a\left(v+v^{\prime}\right), b\left(v+v^{\prime}\right)\right\rangle=\mu\left(b^{*} a\right)
$$

extends continuously to an inner product $\langle\rangle:, V_{0} \times V_{0} \rightarrow \mathbf{C}$ satisfying $\langle x, y\rangle \leq \frac{1}{4}\|x\|\|y\|$. For fixed x, the map $y \mapsto\langle x, y\rangle$ is a continuous antilinear functional of norm $\leq \frac{1}{4}\|x\|$, so that $\langle x, y\rangle=(f(x), y)$ for some $f(x) \in V_{0}$ with $\|f(x)\| \leq \frac{1}{4}\|x\|$. The map $x \mapsto f(x)$ is evidently linear, and has norm $\leq \frac{1}{4}$. We conclude that

$$
\mu\left(b^{*} a\right)=\left\langle a\left(v+v^{\prime}\right), b\left(v+v^{\prime}\right)\right\rangle=\left(f a\left(v+v^{\prime}\right), b\left(v+v^{\prime}\right)\right)_{V}
$$

In particular, we get

$$
\left.\left(b^{*} f a\left(v+v^{\prime}\right), c\left(v+v^{\prime}\right)\right)_{V}=\left(f a\left(v+v^{\prime}\right), b c\left(v+v^{\prime}\right)\right)=\mu\left(c^{*} b^{*} a\right)=\left(f b^{*} a\left(v+v^{\prime}\right), c\left(v+v^{\prime}\right)\right)\right)
$$

By continuity, we deduce that $f b^{*}$ and $b^{*} f$ agree on the whole of V_{0}, so that $f \in B\left(V_{0}\right)$ commutes with the action of A. The operator f is evidently positive (since \langle,$\rangle is positive semidefinite), so it admits a unique$ positive square root $f^{1 / 2}$ which also commutes with the action of A. We then have

$$
\mu\left(b^{*} a\right)=\left(f a\left(v+v^{\prime}\right), b\left(v+v^{\prime}\right)\right)_{V}=\left(a f^{1 / 2}\left(v+v^{\prime}\right), b f^{1 / 2}\left(v+v^{\prime}\right)\right)
$$

so that W is isomorphic to the cyclic subrepresentation of V generated by the vector $f^{1 / 2}\left(v+v^{\prime}\right)$.

