Math 261y: von Neumann Algebras (Lecture 3)

September 7, 2011

In the last lecture, we introduced the notion of a positive element of a C^{*}-algebra A. Our first goal in this lecture is to prove the following:

Proposition 1. Let A be a C^{*}-algebra. Then an element $x \in A$ is positive if and only if we can write $x=y^{*} y$ for some $y \in A$.
Proof. The "if" direction is obvious (in fact, we can take $y=y^{*}$ to be another positive element of A, as we saw in the last lecture). So let us suppose that $x=y^{*} y$; we wish to show that x is positive. Write $x=x_{+}+x_{-}$as in the previous lecture; we wish to prove that $x_{-}=0$. Let $y^{\prime}=y x_{-}$, so that

$$
y^{\prime *} y^{\prime}=x_{-}^{*} y^{*} y x_{-}=x_{-}\left(x_{+}+x_{-}\right) x_{-}=x_{-}^{3} .
$$

Note that x_{-}^{3} is negative, and vanishes if and only if x_{-}vanishes (we can check this in the commutative $C^{*}{ }_{-}$ algebra generated by x_{-}). Replacing y by y^{\prime}, we are reduced to proving that if the product $y^{*} y$ is negative, then $y^{*} y=0$.

We next observe that our claim does not depend on whether we consider the product $y^{*} y$ or $y y^{*}$. This is a consequence of the following more general observation:
Lemma 2. Let A be a Banach algebra (or any algebra) containing elements a and b. Then $\sigma(a b) \cup\{0\}=$ $\sigma(b a) \cup\{0\}$

Proof. We must show that if λ is a nonzero complex number, then $a b-\lambda$ is invertible if and only if $b a-\lambda$ is invertible. We will prove that "if" direction; the converse follows by symmetry. Dividing by λ, we can reduce to the case $\lambda=1$. Let $b a-1$ be invertible, so that there is an element $u \in A$ with

$$
b a u=u+1=u b a .
$$

Let $v=a u b-1$. Then

$$
\begin{aligned}
& a b v=a b(a u b)-a b=a(b a u) b-a b=a(u+1) b-a b=a u b=v+1 \\
& v a b=(a u b) a b-a b=a(u b a) b-a b=a(u+1) b-a b=a u b=v+1
\end{aligned}
$$

so that v is an inverse of $a b-1$.
It follows that if $y^{*} y$ is negative, $y y^{*}$ is also negative. Then $y^{*} y+y y^{*}$ is also negative. However, writing $y=\Re(y)+\Im(y)$, we obtain

$$
\begin{aligned}
y^{*} y+y y^{*} & =(\Re(y)-i \Im(y))(\Re(y)+i \Im(y))+(\Re(y)+i \Im(y))(\Re(y)-i \Im(y)) \\
& =2 \Re(y)^{2}+2 \Im(y)^{2} .
\end{aligned}
$$

Now $\Re(y)$ and $\Im(y)$ are Hermitian, so that $\Re(y)^{2}$ and $\Im(y)^{2}$ are positive (this can checked by reducing to the commutative C^{*}-algebras generated by $\Re(y)$ and $\Im(y)$, respectively). It follows that

$$
y^{*} y=2 \Re(y)^{2}+2 \Im(y)^{2}-y y^{*}
$$

is also positive, proving that $y^{*} y=0$ as desired.

Example 3. Let V be a Hilbert space and let $A=B(V)$ be the algebra of bounded operators on V. Then an element $f \in A$ is positive if and only if is positive when regarded as an operator: that is, if

$$
(f v, v) \geq 0
$$

for all $v \in V$. One direction is clear: if f is positive, we can write $f=g^{*} g$ for some operator g, so that

$$
(f v, v)=\left(g^{*} g v, v\right)=(g v, g v)=\|g v\|^{2} \geq 0 .
$$

Conversely, suppose that f is positive when regarded as an operator. Then

$$
(f v, v)=\overline{(f v, v)}=(v, f v)=(\bar{f} v, v)
$$

for all $v \in V$, so that f is Hermitian. Write $f=f_{+}+f_{-}$as in Proposition ??; we wish to prove that $f_{-}=0$. For every $v \in V$, we have

$$
\begin{aligned}
0 & \leq\left(f f_{-} v, f_{-} v\right) \\
& =\left(f_{-}^{2} v, f_{-} v\right) \\
& =\left(f_{-}^{3} v, v\right)
\end{aligned}
$$

Since f_{-}is negative, we can write $f_{-}=-g^{2}$ for some Hermitian g. Then

$$
0 \leq\left(f_{-}^{3} v, v\right)=-\left(g^{6} v, v\right)=-\left\|g^{3}(v)\right\|
$$

so that $g^{3}=0$, hence $g=0$ and therefore $f_{-}=-g^{2}=0$.
Given a pair of C^{*}-algebras A and B, a map of C^{*}-algebras from A to B is an algebra homomorphism $f: A \rightarrow B$ satisfying $f\left(x^{*}\right)=f(x)^{*}$ for $x \in A$. Any such map is automatically has norm ≤ 1 (and is therefore continuous): that is, we have $\|f(x)\| \leq\|x\|$ for $x \in A$. To prove this, we may replace x by $x^{*} x$ and thereby reduce to the case where x is Hermitian. In this case, we have

$$
\|f(x)\|=\rho(f(x))=\sup \{|\lambda|: \lambda \in \sigma(f(x))\} \leq \sup \{|\lambda|: \lambda \in \sigma(x)\}=\rho(x)=\|x\|
$$

Remark 4. Let $f: A \rightarrow B$ be an injective map of C^{*}-algebras. Then f is isometric: that is, we have $\|x\|=\|f(x)\|$ for all $x \in A$. To prove this, we can again reduce to the case where $x \in A$ is Hermitian. Replacing A and B by the sub- C^{*}-algebras generated by x and $f(x)$, we can assume that A and B are commutative. In this case, we have seen that f induces a surjective map $\operatorname{Spec} B \rightarrow \operatorname{Spec} A$, so that the pullback map $C^{0}(\operatorname{Spec} A) \rightarrow C^{0}(\operatorname{Spec} B)$ is an isometry.

Definition 5. Let A be a C^{*}-algebra. A representation of A is a homomorphism of C^{*}-algebras $f: A \rightarrow$ $B(V)$, for some Hilbert space V.

Equivalently, a representation of A is a left action of A on V, satisfying $\left(x^{*} v, w\right)=(v, x w)$ for $x \in A$. Our main goal is to prove that every C^{*}-algebra A admits a faithful representation:

Theorem 6. Let A be a C^{*}-algebra. Then there exists an injective map $f: A \rightarrow B(V)$, for some Hilbert space V.

Since we can always take a (Hilbert space) direct sum of any collection of representations, Theorem 6 follows from the following simpler assertion:

Proposition 7. Let A be a C^{*}-algebra containing a nonzero element x. Then there exists a representation $f: A \rightarrow B(V)$ such that $f(x) \neq 0$.

To prove Proposition 7, we need a method for constructing representations of A. Note that if we are given a representation of A on a Hilbert space V and a unit vector $v \in V$, we obtain a linear functional μ on A given by

$$
\mu(x)=(x v, v)
$$

This linear functional has the following properties:
(a) We have $\mu(1)=1$ (since v is a unit vector).
(b) If $x \in A$ is Hermitian, then $\mu(x)$ is real. Equivalently, $\mu\left(x^{*}\right)=\overline{\mu(x)}$.
(c) If $x \in A$ is positive, then $\mu(x) \geq 0$ (writing $x=y^{*} y$, we get $\left.\mu(x)=\left(y^{*} y v, v\right)=(y v, y v)\right)$.
(d) The norm of μ is ≤ 1 (in fact, it is exactly 1 , since $\mu(1)=1$).

In fact, these observations are not independent:
Proposition 8. Let A be a C^{*}-algebra and let $\mu: A \rightarrow \mathbf{C}$ be a continuous linear functional such that $\mu(1)=1$. The following conditions are equivalent:
(1) The norm of μ is ≤ 1.
(2) The function μ carries positive elements of A into $\mathbb{R}_{\geq 0}$.
(3) The function μ arises via the above construction. That is, there exists a Hilbert space V, a representation of A on V, and a unit vector $v \in V$ such that $\mu(x)=(x v, v)$.

Proof. We first prove that $(1) \Rightarrow(2)$. Assume that μ satisfies (1); we first show that μ carries Hermitian elements of A to real numbers. Equivalently, we will show that μ carries skew-Hermitian elements $a \in A$ to imaginary numbers. Assume otherwise; then there exists a skew-Hermitian element $a \in A$ such that $\Re(\mu(a)) \neq 0$. Replacing a by $-a$ if necessary, we may suppose that $\Re(\mu(a))>0$. Working in the C^{*} subalgebra of A generated by a, we see that $\|1+\epsilon a\|^{2} \leq 1+C \epsilon^{2}$ for some constant C (where ϵ is a small real number). Then

$$
(1+\epsilon \Re(\mu(a)))^{2} \leq(1+\epsilon \Re(\mu(a)))^{2}+(\epsilon \Im(\mu(a)))^{2}=|\mu(1+\epsilon(a))|^{2} \leq\|1+\epsilon(a)\|^{2} \leq 1+C \epsilon^{2}
$$

This is impossible if $\Re(\mu(a))>0$, for ϵ sufficiently small.
Now let $x \in A$ be positive; we wish to prove that $\mu(x) \geq 0$. We have already seen that $\mu(x)$ is real. For small positive real numbers ϵ, we have $\|1-\epsilon x\| \leq 1$ (we can check this in the commutative C^{*}-algebra generated by x), so that

$$
1-\epsilon \mu(x)=\mu(1)-\epsilon \mu(x)=\mu(1-\epsilon x) \leq\|1-\epsilon x\| \leq 1
$$

which proves that $\epsilon \mu(x) \geq 0$. Dividing by ϵ, we get $\mu(x) \geq 0$.
We now prove that $(2) \Rightarrow(3)$. We define a Hermitian form \langle,$\rangle on A$ by the formula $\langle x, y\rangle=\mu\left(y^{*} x\right)$. Since $x^{*} x$ is positive for $x \in A$, the quantities $\langle x, x\rangle$ are nonnegative for $x \in A$. We may therefore regard the form \langle,$\rangle as making A$ into a pre-Hilbert space. Dividing out by the kernel of the form \langle,$\rangle and taking the$ completion, we obtain a Hilbert space V. For each $x \in A$, left multiplication by x determines a map from A to itself. Let $C=\|x\|$, so that $C^{2}=\left\|x^{*} x\right\|$. Since $x^{*} x$ is positive, we can write $C^{2}=x^{*} x+z^{2}$ for some Hermitian z. We have

$$
\langle x y, x y\rangle=\mu\left(y^{*} x^{*} x y\right)=C^{2} \mu\left(y^{*} y\right)-\mu\left(y^{*} z^{2} y\right) \leq C^{2} \mu\left(y^{*} y\right)=C^{2}\langle y, y\rangle
$$

It follows that left multiplication by x is bounded (by $C=\|x\|$) for the norm $\sqrt{\langle y, y\rangle}$, and therefore induces a bounded operator from V to itself. For $y, y^{\prime} \in A$, we have

$$
\left\langle x^{*} y, y^{\prime}\right\rangle=\mu\left(y^{*} x^{*} y\right)=\left\langle y, x y^{\prime}\right\rangle
$$

and by continuity the same equation holds for y and y^{\prime} in the completion V. It follows that this construction determines a representation of A on V. By construction, the image of $1 \in A$ is a vector $v \in V$ satisfying

$$
(x v, v)=\langle x 1,1\rangle=\mu(x)
$$

The implication (3) $\Rightarrow(1)$ now follows from the fact that the map $A \rightarrow B(V)$ has norm ≤ 1 (which follows from the above calculation, and was also proven in general above).

Definition 9. Let A be a C^{*}-algebra. A state is a linear functional on A satisfying the equivalent conditions of Proposition 8.

Example 10. Every algebra homomorphism $A \rightarrow \mathbf{C}$ is a state. In particular, every commutative C^{*}-algebra $A \simeq C^{0}(X)$ has plenty of states, given by evaluation at points $x \in X$. The representations given in the proof of Proposition 8 are not very interesting: the Hilbert spaces are one-dimensional.

Proposition 11. Let $f: A \rightarrow B$ be an injective map of C^{*}-algebras. Then any state $\mu_{0}: A \rightarrow \mathbf{C}$ can be extended to a state $\mu: B \rightarrow \mathbf{C}$.

Proof. This follows from characterization (1) of Proposition 8 and the Hahn-Banach theorem.
Corollary 12. Let A be a C^{*}-algebra, let $x \in A$ be a normal element, and let $\lambda \in \sigma(x)$. Then there exists a state μ of A such that $\mu(x)=\lambda$.

Proof. Using Proposition 11 we can replace A by the C^{*}-subalgebra generated by x, which is commutative since x is normal. The desired result now follows from Example 10.

Corollary 13. Let A be a C^{*}-algebra, let $x \in A$ be a normal element, and let $\lambda \in \sigma(x)$. Then there exists a representation V of A containing a unit vector v with $(x v, v)=\lambda$.

Proof of Proposition 7. Let $x \in A$ be an arbitrary nonzero element; we wish to prove that there is a representation V of A on which x acts nontrivially. Replacing x by $x^{*} x$, we can assume that x is normal (even positive). Then $0<\|x\|=\rho(x)$, so there exists a nonzero element $\lambda \in \sigma(x)$. Using Corollary 13, we can find a representation V and a vector $v \in V$ such that $(x v, v)=\lambda$, from which it follows that $x v \neq 0$.

