
Math 261y: von Neumann Algebras (Lecture 3)

September 7, 2011

In the last lecture, we introduced the notion of a positive element of a C∗-algebra A. Our first goal in
this lecture is to prove the following:

Proposition 1. Let A be a C∗-algebra. Then an element x ∈ A is positive if and only if we can write
x = y∗y for some y ∈ A.

Proof. The “if” direction is obvious (in fact, we can take y = y∗ to be another positive element of A, as
we saw in the last lecture). So let us suppose that x = y∗y; we wish to show that x is positive. Write
x = x+ + x− as in the previous lecture; we wish to prove that x− = 0. Let y′ = yx−, so that

y′∗y′ = x∗−y
∗yx− = x−(x+ + x−)x− = x3−.

Note that x3− is negative, and vanishes if and only if x− vanishes (we can check this in the commutative C∗-
algebra generated by x−). Replacing y by y′, we are reduced to proving that if the product y∗y is negative,
then y∗y = 0.

We next observe that our claim does not depend on whether we consider the product y∗y or yy∗. This
is a consequence of the following more general observation:

Lemma 2. Let A be a Banach algebra (or any algebra) containing elements a and b. Then σ(ab) ∪ {0} =
σ(ba) ∪ {0}

Proof. We must show that if λ is a nonzero complex number, then ab− λ is invertible if and only if ba− λ
is invertible. We will prove that “if” direction; the converse follows by symmetry. Dividing by λ, we can
reduce to the case λ = 1. Let ba− 1 be invertible, so that there is an element u ∈ A with

bau = u+ 1 = uba.

Let v = aub− 1. Then

abv = ab(aub)− ab = a(bau)b− ab = a(u+ 1)b− ab = aub = v + 1

vab = (aub)ab− ab = a(uba)b− ab = a(u+ 1)b− ab = aub = v + 1

so that v is an inverse of ab− 1.

It follows that if y∗y is negative, yy∗ is also negative. Then y∗y + yy∗ is also negative. However, writing
y = <(y) + =(y), we obtain

y∗y + yy∗ = (<(y)− i=(y))(<(y) + i=(y)) + (<(y) + i=(y))(<(y)− i=(y))

= 2<(y)2 + 2=(y)2.

Now <(y) and =(y) are Hermitian, so that <(y)2 and =(y)2 are positive (this can checked by reducing to
the commutative C∗-algebras generated by <(y) and =(y), respectively). It follows that

y∗y = 2<(y)2 + 2=(y)2 − yy∗

is also positive, proving that y∗y = 0 as desired.
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Example 3. Let V be a Hilbert space and let A = B(V ) be the algebra of bounded operators on V . Then
an element f ∈ A is positive if and only if is positive when regarded as an operator: that is, if

(fv, v) ≥ 0

for all v ∈ V . One direction is clear: if f is positive, we can write f = g∗g for some operator g, so that

(fv, v) = (g∗gv, v) = (gv, gv) = ||gv||2 ≥ 0.

Conversely, suppose that f is positive when regarded as an operator. Then

(fv, v) = (fv, v) = (v, fv) = (fv, v)

for all v ∈ V , so that f is Hermitian. Write f = f+ + f− as in Proposition ??; we wish to prove that f− = 0.
For every v ∈ V , we have

0 ≤ (ff−v, f−v)

= (f2−v, f−v)

= (f3−v, v).

Since f− is negative, we can write f− = −g2 for some Hermitian g. Then

0 ≤ (f3−v, v) = −(g6v, v) = −||g3(v)||,

so that g3 = 0, hence g = 0 and therefore f− = −g2 = 0.

Given a pair of C∗-algebras A and B, a map of C∗-algebras from A to B is an algebra homomorphism
f : A → B satisfying f(x∗) = f(x)∗ for x ∈ A. Any such map is automatically has norm ≤ 1 (and is
therefore continuous): that is, we have ||f(x)|| ≤ ||x|| for x ∈ A. To prove this, we may replace x by x∗x
and thereby reduce to the case where x is Hermitian. In this case, we have

||f(x)|| = ρ(f(x)) = sup{|λ| : λ ∈ σ(f(x))} ≤ sup{|λ| : λ ∈ σ(x)} = ρ(x) = ||x||

.

Remark 4. Let f : A → B be an injective map of C∗-algebras. Then f is isometric: that is, we have
||x|| = ||f(x)|| for all x ∈ A. To prove this, we can again reduce to the case where x ∈ A is Hermitian.
Replacing A and B by the sub-C∗-algebras generated by x and f(x), we can assume that A and B are
commutative. In this case, we have seen that f induces a surjective map SpecB → SpecA, so that the
pullback map C0(SpecA)→ C0(SpecB) is an isometry.

Definition 5. Let A be a C∗-algebra. A representation of A is a homomorphism of C∗-algebras f : A →
B(V ), for some Hilbert space V .

Equivalently, a representation of A is a left action of A on V , satisfying (x∗v, w) = (v, xw) for x ∈ A.
Our main goal is to prove that every C∗-algebra A admits a faithful representation:

Theorem 6. Let A be a C∗-algebra. Then there exists an injective map f : A → B(V ), for some Hilbert
space V .

Since we can always take a (Hilbert space) direct sum of any collection of representations, Theorem 6
follows from the following simpler assertion:

Proposition 7. Let A be a C∗-algebra containing a nonzero element x. Then there exists a representation
f : A→ B(V ) such that f(x) 6= 0.
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To prove Proposition 7, we need a method for constructing representations of A. Note that if we are
given a representation of A on a Hilbert space V and a unit vector v ∈ V , we obtain a linear functional µ
on A given by

µ(x) = (xv, v).

This linear functional has the following properties:

(a) We have µ(1) = 1 (since v is a unit vector).

(b) If x ∈ A is Hermitian, then µ(x) is real. Equivalently, µ(x∗) = µ(x).

(c) If x ∈ A is positive, then µ(x) ≥ 0 (writing x = y∗y, we get µ(x) = (y∗yv, v) = (yv, yv) ).

(d) The norm of µ is ≤ 1 (in fact, it is exactly 1, since µ(1) = 1).

In fact, these observations are not independent:

Proposition 8. Let A be a C∗-algebra and let µ : A → C be a continuous linear functional such that
µ(1) = 1. The following conditions are equivalent:

(1) The norm of µ is ≤ 1.

(2) The function µ carries positive elements of A into R≥0.

(3) The function µ arises via the above construction. That is, there exists a Hilbert space V , a represen-
tation of A on V , and a unit vector v ∈ V such that µ(x) = (xv, v).

Proof. We first prove that (1) ⇒ (2). Assume that µ satisfies (1); we first show that µ carries Hermitian
elements of A to real numbers. Equivalently, we will show that µ carries skew-Hermitian elements a ∈ A
to imaginary numbers. Assume otherwise; then there exists a skew-Hermitian element a ∈ A such that
<(µ(a)) 6= 0. Replacing a by −a if necessary, we may suppose that <(µ(a)) > 0. Working in the C∗-
subalgebra of A generated by a, we see that ||1 + εa||2 ≤ 1 + Cε2 for some constant C (where ε is a small
real number). Then

(1 + ε<(µ(a)))2 ≤ (1 + ε<(µ(a)))2 + (ε=(µ(a)))2 = |µ(1 + ε(a))|2 ≤ ||1 + ε(a)||2 ≤ 1 + Cε2.

This is impossible if <(µ(a)) > 0, for ε sufficiently small.
Now let x ∈ A be positive; we wish to prove that µ(x) ≥ 0. We have already seen that µ(x) is real.

For small positive real numbers ε, we have ||1− εx|| ≤ 1 (we can check this in the commutative C∗-algebra
generated by x), so that

1− εµ(x) = µ(1)− εµ(x) = µ(1− εx) ≤ ||1− εx|| ≤ 1,

which proves that εµ(x) ≥ 0. Dividing by ε, we get µ(x) ≥ 0.
We now prove that (2) ⇒ (3). We define a Hermitian form 〈, 〉 on A by the formula 〈x, y〉 = µ(y∗x).

Since x∗x is positive for x ∈ A, the quantities 〈x, x〉 are nonnegative for x ∈ A. We may therefore regard
the form 〈, 〉 as making A into a pre-Hilbert space. Dividing out by the kernel of the form 〈, 〉 and taking the
completion, we obtain a Hilbert space V . For each x ∈ A, left multiplication by x determines a map from
A to itself. Let C = ||x||, so that C2 = ||x∗x||. Since x∗x is positive, we can write C2 = x∗x+ z2 for some
Hermitian z. We have

〈xy, xy〉 = µ(y∗x∗xy) = C2µ(y∗y)− µ(y∗z2y) ≤ C2µ(y∗y) = C2〈y, y〉.

It follows that left multiplication by x is bounded (by C = ||x||) for the norm
√
〈y, y〉, and therefore induces

a bounded operator from V to itself. For y, y′ ∈ A, we have

〈x∗y, y′〉 = µ(y′∗x∗y) = 〈y, xy′〉,
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and by continuity the same equation holds for y and y′ in the completion V . It follows that this construction
determines a representation of A on V . By construction, the image of 1 ∈ A is a vector v ∈ V satisfying

(xv, v) = 〈x1, 1〉 = µ(x).

The implication (3) ⇒ (1) now follows from the fact that the map A → B(V ) has norm ≤ 1 (which
follows from the above calculation, and was also proven in general above).

Definition 9. Let A be a C∗-algebra. A state is a linear functional on A satisfying the equivalent conditions
of Proposition 8.

Example 10. Every algebra homomorphism A→ C is a state. In particular, every commutative C∗-algebra
A ' C0(X) has plenty of states, given by evaluation at points x ∈ X. The representations given in the proof
of Proposition 8 are not very interesting: the Hilbert spaces are one-dimensional.

Proposition 11. Let f : A → B be an injective map of C∗-algebras. Then any state µ0 : A → C can be
extended to a state µ : B → C.

Proof. This follows from characterization (1) of Proposition 8 and the Hahn-Banach theorem.

Corollary 12. Let A be a C∗-algebra, let x ∈ A be a normal element, and let λ ∈ σ(x). Then there exists
a state µ of A such that µ(x) = λ.

Proof. Using Proposition 11 we can replace A by the C∗-subalgebra generated by x, which is commutative
since x is normal. The desired result now follows from Example 10.

Corollary 13. Let A be a C∗-algebra, let x ∈ A be a normal element, and let λ ∈ σ(x). Then there exists
a representation V of A containing a unit vector v with (xv, v) = λ.

Proof of Proposition 7. Let x ∈ A be an arbitrary nonzero element; we wish to prove that there is a repre-
sentation V of A on which x acts nontrivially. Replacing x by x∗x, we can assume that x is normal (even
positive). Then 0 < ||x|| = ρ(x), so there exists a nonzero element λ ∈ σ(x). Using Corollary 13, we can
find a representation V and a vector v ∈ V such that (xv, v) = λ, from which it follows that xv 6= 0.
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