Math 261y: von Neumann Algebras (Lecture 3)

September 7, 2011

In the last lecture, we introduced the notion of a *positive* element of a C^* -algebra A. Our first goal in this lecture is to prove the following:

Proposition 1. Let A be a C^{*}-algebra. Then an element $x \in A$ is positive if and only if we can write $x = y^*y$ for some $y \in A$.

Proof. The "if" direction is obvious (in fact, we can take $y = y^*$ to be another positive element of A, as we saw in the last lecture). So let us suppose that $x = y^*y$; we wish to show that x is positive. Write $x = x_+ + x_-$ as in the previous lecture; we wish to prove that $x_- = 0$. Let $y' = yx_-$, so that

$$y'^*y' = x_-^*y^*yx_- = x_-(x_+ + x_-)x_- = x_-^3.$$

Note that x_{-}^{3} is negative, and vanishes if and only if x_{-} vanishes (we can check this in the commutative C^{*} algebra generated by x_{-}). Replacing y by y', we are reduced to proving that if the product $y^{*}y$ is negative,
then $y^{*}y = 0$.

We next observe that our claim does not depend on whether we consider the product y^*y or yy^* . This is a consequence of the following more general observation:

Lemma 2. Let A be a Banach algebra (or any algebra) containing elements a and b. Then $\sigma(ab) \cup \{0\} = \sigma(ba) \cup \{0\}$

Proof. We must show that if λ is a nonzero complex number, then $ab - \lambda$ is invertible if and only if $ba - \lambda$ is invertible. We will prove that "if" direction; the converse follows by symmetry. Dividing by λ , we can reduce to the case $\lambda = 1$. Let ba - 1 be invertible, so that there is an element $u \in A$ with

$$bau = u + 1 = uba$$

Let v = aub - 1. Then

$$abv = ab(aub) - ab = a(bau)b - ab = a(u+1)b - ab = aub = v + 1$$

 $vab = (aub)ab - ab = a(uba)b - ab = a(u+1)b - ab = aub = v + 1$

so that v is an inverse of ab - 1.

It follows that if y^*y is negative, yy^* is also negative. Then $y^*y + yy^*$ is also negative. However, writing $y = \Re(y) + \Im(y)$, we obtain

$$y^*y + yy^* = (\Re(y) - i\Im(y))(\Re(y) + i\Im(y)) + (\Re(y) + i\Im(y))(\Re(y) - i\Im(y))$$

= $2\Re(y)^2 + 2\Im(y)^2.$

Now $\Re(y)$ and $\Im(y)$ are Hermitian, so that $\Re(y)^2$ and $\Im(y)^2$ are positive (this can checked by reducing to the commutative C^* -algebras generated by $\Re(y)$ and $\Im(y)$, respectively). It follows that

$$y^*y = 2\Re(y)^2 + 2\Im(y)^2 - yy^*$$

is also positive, proving that $y^*y = 0$ as desired.

Example 3. Let V be a Hilbert space and let A = B(V) be the algebra of bounded operators on V. Then an element $f \in A$ is positive if and only if is positive when regarded as an operator: that is, if

$$(fv, v) \ge 0$$

for all $v \in V$. One direction is clear: if f is positive, we can write $f = g^*g$ for some operator g, so that

$$(fv, v) = (g^*gv, v) = (gv, gv) = ||gv||^2 \ge 0$$

Conversely, suppose that f is positive when regarded as an operator. Then

$$(fv,v) = \overline{(fv,v)} = (v,fv) = (\overline{f}v,v)$$

for all $v \in V$, so that f is Hermitian. Write $f = f_+ + f_-$ as in Proposition ??; we wish to prove that $f_- = 0$. For every $v \in V$, we have

$$\begin{array}{rcl}
0 &\leq & (ff_{-}v, f_{-}v) \\
&= & (f_{-}^{2}v, f_{-}v) \\
&= & (f_{-}^{3}v, v).
\end{array}$$

Since f_{-} is negative, we can write $f_{-} = -g^2$ for some Hermitian g. Then

$$0 \le (f_{-}^{3}v, v) = -(g^{6}v, v) = -||g^{3}(v)||,$$

so that $g^3 = 0$, hence g = 0 and therefore $f_- = -g^2 = 0$.

Given a pair of C^* -algebras A and B, a map of C^* -algebras from A to B is an algebra homomorphism $f: A \to B$ satisfying $f(x^*) = f(x)^*$ for $x \in A$. Any such map is automatically has norm ≤ 1 (and is therefore continuous): that is, we have $||f(x)|| \leq ||x||$ for $x \in A$. To prove this, we may replace x by x^*x and thereby reduce to the case where x is Hermitian. In this case, we have

$$||f(x)|| = \rho(f(x)) = \sup\{|\lambda| : \lambda \in \sigma(f(x))\} \le \sup\{|\lambda| : \lambda \in \sigma(x)\} = \rho(x) = ||x||$$

Remark 4. Let $f : A \to B$ be an injective map of C^* -algebras. Then f is isometric: that is, we have ||x|| = ||f(x)|| for all $x \in A$. To prove this, we can again reduce to the case where $x \in A$ is Hermitian. Replacing A and B by the sub- C^* -algebras generated by x and f(x), we can assume that A and B are commutative. In this case, we have seen that f induces a surjective map Spec $B \to \text{Spec } A$, so that the pullback map $C^0(\text{Spec } A) \to C^0(\text{Spec } B)$ is an isometry.

Definition 5. Let A be a C^{*}-algebra. A representation of A is a homomorphism of C^{*}-algebras $f : A \to B(V)$, for some Hilbert space V.

Equivalently, a representation of A is a left action of A on V, satisfying $(x^*v, w) = (v, xw)$ for $x \in A$. Our main goal is to prove that every C^* -algebra A admits a *faithful* representation:

Theorem 6. Let A be a C^{*}-algebra. Then there exists an injective map $f : A \to B(V)$, for some Hilbert space V.

Since we can always take a (Hilbert space) direct sum of any collection of representations, Theorem 6 follows from the following simpler assertion:

Proposition 7. Let A be a C^{*}-algebra containing a nonzero element x. Then there exists a representation $f: A \to B(V)$ such that $f(x) \neq 0$.

To prove Proposition 7, we need a method for constructing representations of A. Note that if we are given a representation of A on a Hilbert space V and a unit vector $v \in V$, we obtain a linear functional μ on A given by

$$\mu(x) = (xv, v).$$

This linear functional has the following properties:

- (a) We have $\mu(1) = 1$ (since v is a unit vector).
- (b) If $x \in A$ is Hermitian, then $\mu(x)$ is real. Equivalently, $\mu(x^*) = \overline{\mu(x)}$.
- (c) If $x \in A$ is positive, then $\mu(x) \ge 0$ (writing $x = y^*y$, we get $\mu(x) = (y^*yv, v) = (yv, yv)$).
- (d) The norm of μ is ≤ 1 (in fact, it is exactly 1, since $\mu(1) = 1$).

In fact, these observations are not independent:

Proposition 8. Let A be a C^{*}-algebra and let $\mu : A \to \mathbf{C}$ be a continuous linear functional such that $\mu(1) = 1$. The following conditions are equivalent:

- (1) The norm of μ is ≤ 1 .
- (2) The function μ carries positive elements of A into $\mathbb{R}_{\geq 0}$.
- (3) The function μ arises via the above construction. That is, there exists a Hilbert space V, a representation of A on V, and a unit vector $v \in V$ such that $\mu(x) = (xv, v)$.

Proof. We first prove that $(1) \Rightarrow (2)$. Assume that μ satisfies (1); we first show that μ carries Hermitian elements of A to real numbers. Equivalently, we will show that μ carries skew-Hermitian elements $a \in A$ to imaginary numbers. Assume otherwise; then there exists a skew-Hermitian element $a \in A$ such that $\Re(\mu(a)) \neq 0$. Replacing a by -a if necessary, we may suppose that $\Re(\mu(a)) > 0$. Working in the C^* -subalgebra of A generated by a, we see that $||1 + \epsilon a||^2 \leq 1 + C\epsilon^2$ for some constant C (where ϵ is a small real number). Then

$$(1 + \epsilon \Re(\mu(a)))^2 \le (1 + \epsilon \Re(\mu(a)))^2 + (\epsilon \Im(\mu(a)))^2 = |\mu(1 + \epsilon(a))|^2 \le ||1 + \epsilon(a)||^2 \le 1 + C\epsilon^2.$$

This is impossible if $\Re(\mu(a)) > 0$, for ϵ sufficiently small.

Now let $x \in A$ be positive; we wish to prove that $\mu(x) \ge 0$. We have already seen that $\mu(x)$ is real. For small positive real numbers ϵ , we have $||1 - \epsilon x|| \le 1$ (we can check this in the commutative C^{*}-algebra generated by x), so that

$$1 - \epsilon \mu(x) = \mu(1) - \epsilon \mu(x) = \mu(1 - \epsilon x) \le ||1 - \epsilon x|| \le 1,$$

which proves that $\epsilon \mu(x) \ge 0$. Dividing by ϵ , we get $\mu(x) \ge 0$.

We now prove that $(2) \Rightarrow (3)$. We define a Hermitian form \langle , \rangle on A by the formula $\langle x, y \rangle = \mu(y^*x)$. Since x^*x is positive for $x \in A$, the quantities $\langle x, x \rangle$ are nonnegative for $x \in A$. We may therefore regard the form \langle , \rangle as making A into a *pre-Hilbert space*. Dividing out by the kernel of the form \langle , \rangle and taking the completion, we obtain a Hilbert space V. For each $x \in A$, left multiplication by x determines a map from A to itself. Let C = ||x||, so that $C^2 = ||x^*x||$. Since x^*x is positive, we can write $C^2 = x^*x + z^2$ for some Hermitian z. We have

$$\langle xy, xy \rangle = \mu(y^*x^*xy) = C^2\mu(y^*y) - \mu(y^*z^2y) \le C^2\mu(y^*y) = C^2\langle y, y \rangle.$$

It follows that left multiplication by x is bounded (by C = ||x||) for the norm $\sqrt{\langle y, y \rangle}$, and therefore induces a bounded operator from V to itself. For $y, y' \in A$, we have

$$\langle x^*y, y'\rangle = \mu(y'^*x^*y) = \langle y, xy'\rangle,$$

and by continuity the same equation holds for y and y' in the completion V. It follows that this construction determines a representation of A on V. By construction, the image of $1 \in A$ is a vector $v \in V$ satisfying

$$(xv, v) = \langle x1, 1 \rangle = \mu(x).$$

The implication (3) \Rightarrow (1) now follows from the fact that the map $A \rightarrow B(V)$ has norm ≤ 1 (which follows from the above calculation, and was also proven in general above).

Definition 9. Let A be a C^* -algebra. A *state* is a linear functional on A satisfying the equivalent conditions of Proposition 8.

Example 10. Every algebra homomorphism $A \to \mathbf{C}$ is a state. In particular, every commutative C^* -algebra $A \simeq C^0(X)$ has plenty of states, given by evaluation at points $x \in X$. The representations given in the proof of Proposition 8 are not very interesting: the Hilbert spaces are one-dimensional.

Proposition 11. Let $f : A \to B$ be an injective map of C^* -algebras. Then any state $\mu_0 : A \to \mathbf{C}$ can be extended to a state $\mu : B \to \mathbf{C}$.

Proof. This follows from characterization (1) of Proposition 8 and the Hahn-Banach theorem.

Corollary 12. Let A be a C^{*}-algebra, let $x \in A$ be a normal element, and let $\lambda \in \sigma(x)$. Then there exists a state μ of A such that $\mu(x) = \lambda$.

Proof. Using Proposition 11 we can replace A by the C^* -subalgebra generated by x, which is commutative since x is normal. The desired result now follows from Example 10.

Corollary 13. Let A be a C^{*}-algebra, let $x \in A$ be a normal element, and let $\lambda \in \sigma(x)$. Then there exists a representation V of A containing a unit vector v with $(xv, v) = \lambda$.

Proof of Proposition 7. Let $x \in A$ be an arbitrary nonzero element; we wish to prove that there is a representation V of A on which x acts nontrivially. Replacing x by x^*x , we can assume that x is normal (even positive). Then $0 < ||x|| = \rho(x)$, so there exists a nonzero element $\lambda \in \sigma(x)$. Using Corollary 13, we can find a representation V and a vector $v \in V$ such that $(xv, v) = \lambda$, from which it follows that $xv \neq 0$.