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December 1, 2011

Our first goal in this lecture is to finish the example we were discussing last time. Let G be a locally
compact group. Then G admits a left invariant measure µ, which is uniquely determined up to scalars (µ
is called Haar measure on G). The measure µ need not be right invariant. For each g ∈ G, let µg be the
measure obtained from µ by right translation by g. Then µg is also left invariant, so we have µg = ∆(g)µ for
some scalar ∆(g) ∈ R>0. The function ∆ : G→ R>0 is a group homomorphism, called the modular function
of G. A group G is said to be unimodular if ∆ is trivial: that is, if µ is also a right invariant measure.

Example 1. If G is discrete, there is a unique Haar measure µ on G such that every point has measure 1.
Then µg has the same property for each g ∈ G, so that ∆(g) = 1. Thus discrete groups are unimodular.

Example 2. If G is compact, there is a unique Haar measure µ on G such that µ(G) = 1. Then µg has the
same property for each g ∈ G, so that ∆(g) = 1. Thus compact groups are unimodular.

Example 3. Let G be an n-dimensional real Lie group and g its Lie algebra. Then the adjoint action of G
on g determines an action of G on ∧ng ' R. This action is given by a character G → R×, whose absolute
value is the modular function of G. Consequently, there are many non-unimodular groups: for example, the
group of upper triangular matrices over R.

Remark 4. Since right translation by gh is obtained by composing right translation by g and by h, we
obtain ∆(gh) = ∆(g)∆(h). That is, ∆ is a group homomorphism from G to R>0. With more effort, one can
show that ∆ is continuous.

Remark 5. Let G be a locally compact group with Haar measure µ. Then ∆µ is a measure on G. For each
g ∈ G, we have

(∆−1µ)g = (∆−1)gµg = (∆−1∆(g)−1)(∆(g)µ) = ∆−1µ.

That is, the measure ∆−1µ is right invariant.
There is another procedure for producing a right invariant measure on G: we can take µ′ to be the

measure on G obtained by pulling back the measure µ along the map g 7→ g−1. It follows that µ′ = c∆−1µ
for some positive real number c. For any bounded open subset U ⊆ G which is symmetric about the origin,
we have

µ(U) = µ′(U) = c

∫
U

∆(g)dµ.

That is,
∫
U

(c∆(g)−1 − 1)dµ = 0. Taking U to be a very small neighborhood of the origin (and using the
continuity of ∆) we deduce that c = 1: that is, we have µ′ = ∆−1µ.

Let C0
c (G) denote the space of compactly supported continuous C-valued functions on G. We regard

C0
c (G) as an ∗-algebra under convolution ?, where

(f ? f ′)(g) =

∫
f(h)f ′(h−1g)dµ =

∫
f(gh)f ′(h−1)dµ.

f∗(g) = f(g−1)∆(g−1).
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This algebra acts on L2(G) by convolution. The von Neumann algebra generated by this action is the same
as the von Neumann algebra generated by right translations on L2(G); we denote this von Neumann algebra
by A(G). Let us think of A(G) as a completion of C0

c (G); in particular, we will identify each element of
C0
c (G) with its image in A(G).

Let m denote the collection of all positive elements of A(G) of the form f∗ ? f , where f ∈ C0
c (G).

Evaluation at the identity determines a map φ0 : m→ R≥0, given by

f∗ ? f 7→ (f∗ ? f)(e) =

∫
f(h−1)f(h−1)∆(h)−1dµ =

∫
||f(h−1)||2dµ′ =

∫
||f(h)||2dµ.

One can show that this extends to a faithful semifinite normal weight φ : A(G)+ → R≥0 ∪{∞}. The resulting
inner product is well-defined on C0

c (G) and given by

(f, f ′) = (f ′∗ ? f)(e) =

∫
f ′(g−1)f(g−1)∆(g−1)dµ =

∫
f(g)f ′(g)dµ.

This induces an identification of the semicyclic representation Vφ with L2(G), under which the embedding
C0
c (G) → Vφ corresponds to the inclusion of C0

c (G) into L2(G,µ). In other words, we have L2(A(G)) =
L2(G,µ).

Let S be the unbounded operator on L2(G,µ) appearing in Tomita-Takesaki theory. It is given by on
C0
c (G) by the formula f 7→ f∗. This map is generally not antiunitary. If we write

(f, f ′) =

∫
f(g)f ′(g)dµ,

then we have

(S(f ′), S(f)) =

∫
f(g−1)f ′(g−1)∆(g−1)2dµ =

∫
f(g−1)f ′(g−1)∆(g−1)dµ′ =

∫
f(g)f ′(g)∆(g)dµ.

where µ′ is the pullback of µ along the inversion map. Consider instead the operator J given by

(Jf)(g) = ∆(g)−1/2f(g−1)

We have

(J(f ′), J(f)) =

∫
f(g−1)f ′(g−1)∆(g)−1dµ =

∫
f(g−1)f ′(g−1)dµ′ =

∫
f(g)f ′(g)dµ

so that J is antiunitary. We have
S = ∆−1/2J,

where ∆−1/2 denote the unbounded operator on L2(G,µ) given by pointwise multiplication by ∆−1/2. Since
this is a self-adjoint operator, we see that S = ∆−1/2J = J∆1/2 is the polar decomposition appearing in
Tomita-Takesaki theory.

For each g ∈ G, let lg be the unitary operator on L2(G,µ) given by left translation by g. We also have a
non-unitary operator rg given by right translation by g. We now compute

(JlgJ)f(h) = (Jlg)(∆
−1/2(h)f(h−1))

= J(∆−1/2(gh)f(h−1g−1)

= ∆−1/2(h)∆−1/2(gh−1)f(hg−1)

= ∆−1/2(g)rg−1(f).

In other words, conjugation by J carries lg to a constant multiple of rg−1 , normalized so as to be a unitary
operator. It follows that the commutant of A(G) in L2(G,µ) is generated by the right translation operators
rg.
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For each real number t, pointwise multiplication by ∆it determines a unitary operator from L2(G,µ) to
itself. Let us denote this operator by ∆it. We have

(∆itlg∆
−it)f(h) = (∆itlg)∆(h)−itf(h)

= ∆it(∆(gh)−itf(gh)

= ∆it(g)∆(gh)−itf(gh)

= ∆(h)−itlg(f(h)).

That is, conjugation by ∆it carries each left translation operator lg to a scalar multiple of itself. It follows
that conjugation by ∆it preserves the operator algebra A(G).
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