Math 261y: von Neumann Algebras (Lecture 35)
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Our first goal in this lecture is to finish the example we were discussing last time. Let G be a locally
compact group. Then G admits a left invariant measure u, which is uniquely determined up to scalars (u
is called Haar measure on G). The measure p need not be right invariant. For each g € G, let u9 be the
measure obtained from p by right translation by g. Then p9 is also left invariant, so we have u9 = A(g)u for
some scalar A(g) € Rsg. The function A : G — R+ is a group homomorphism, called the modular function
of G. A group G is said to be unimodular if A is trivial: that is, if p is also a right invariant measure.

Example 1. If G is discrete, there is a unique Haar measure p on G such that every point has measure 1.
Then p9 has the same property for each g € G, so that A(g) = 1. Thus discrete groups are unimodular.

Example 2. If G is compact, there is a unique Haar measure p on G such that u(G) = 1. Then p9 has the
same property for each g € G, so that A(g) = 1. Thus compact groups are unimodular.

Example 3. Let G be an n-dimensional real Lie group and g its Lie algebra. Then the adjoint action of G
on g determines an action of G on A"g ~ R. This action is given by a character G — R*, whose absolute
value is the modular function of G. Consequently, there are many non-unimodular groups: for example, the
group of upper triangular matrices over R.

Remark 4. Since right translation by gh is obtained by composing right translation by g and by h, we
obtain A(gh) = A(g)A(h). That is, A is a group homomorphism from G to Rso. With more effort, one can
show that A is continuous.

Remark 5. Let G be a locally compact group with Haar measure u. Then Ay is a measure on G. For each
g € G, we have
(A7) = (A7) = (AT A(g) ) (Ag)p) = A .

That is, the measure A~!y is right invariant.

There is another procedure for producing a right invariant measure on G: we can take u’ to be the
measure on G obtained by pulling back the measure ;1 along the map g — g~ !. It follows that 1/ = cA~p
for some positive real number c. For any bounded open subset U C G which is symmetric about the origin,
we have
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That is, fU(cA(g)*1 — 1)dp = 0. Taking U to be a very small neighborhood of the origin (and using the
continuity of A) we deduce that ¢ = 1: that is, we have u/ = A~ p.

Let CO(G) denote the space of compactly supported continuous C-valued functions on G. We regard
C?(G) as an *-algebra under convolution *, where
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This algebra acts on L?(G) by convolution. The von Neumann algebra generated by this action is the same
as the von Neumann algebra generated by right translations on L?(G); we denote this von Neumann algebra
by A(G). Let us think of A(G) as a completion of C%(G); in particular, we will identify each element of
C?(G) with its image in A(G).

Let m denote the collection of all positive elements of A(G) of the form f* x f, where f € C2(G).
Evaluation at the identity determines a map ¢¢ : m — R>q, given by
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One can show that this extends to a faithful semifinite normal weight ¢ : A(G)4+ — R>¢U{oo}. The resulting
inner product is well-defined on C%(G) and given by

o f) = (F % f)(e / Pl (g )Ag )dp = / F@)Flg)du

This induces an identification of the semicyclic representation V,, with L?(G), under which the embedding
CY%(G) — V, corresponds to the inclusion of CO(G) into L?(G,p). In other words, we have L?(A(G)) =
L*(G, ).

Let S be the unbounded operator on L?(G, ) appearing in Tomita-Takesaki theory. It is given by on
CY(G) by the formula f — f*. This map is generally not antiunitary. If we write
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then we have
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where p’ is the pullback of u along the inversion map. Consider instead the operator J given by

(J£)(9) = Alg) "2 f(gT)
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so that J is antiunitary. We have

We have

S=A"12,

where A~1/2 denote the unbounded operator on L(G, ) given by pointwise multiplication by A=/2. Since
this is a self-adjoint operator, we see that S = A~'/2J = JAY2 is the polar decomposition appearing in
Tomita-Takesaki theory.

For each g € G, let [, be the unitary operator on L?(G, ) given by left translation by g. We also have a
non-unitary operator 7, given by right translation by g. We now compute

(JlgD)f(h) = (Jl)(ATV2(h) f(A7T))
= J(AT(gh)f(h7Tg™T)
= ATEm)ATV2(ghm) f(hg )
= ATV2(g)rg ().
In other words, conjugation by .J carries [, to a constant multiple of r;-1, normalized so as to be a unitary

operator. It follows that the commutant of A(G) in L?(G, i) is generated by the right translation operators
Tg.



For each real number ¢, pointwise multiplication by A% determines a unitary operator from L?(G, u) to

itself. Let us denote this operator by A%, We have

(A" AT f(h) =

(A™1)A(h) ™" f(h)
A" (A(gh)~" f(gh)
A" (g)A(gh) ™" f(gh)
A(h) ™"y (f(h)).

That is, conjugation by A® carries each left translation operator I, to a scalar multiple of itself. It follows
that conjugation by A% preserves the operator algebra A(G).



