
Math 261y: von Neumann Algebras (Lecture 34)

November 30, 2011

In this lecture, we will study how Tomita-Takesaki theory plays out in some examples, mostly omitting
proofs.

Let us first recall the basic setup. Let A be a von Neumann algebra and V a representation of A
equipped with a cyclic and separating vector v ∈ V . Then the closure of the unbounded operator xv 7→ x∗v
admits a polar decomposition J∆1/2. The main theorem asserts that conjugation by J exchanges A with its
commutant A′.

We may assume without loss of generality that v ∈ V is a unit vector, so that v determines an ultraweakly
continuous state φ : A→ C by the formula φ(x) = (xv, v). Since v ∈ V is cyclic, we can recover the pair (V, v)
canonically from the state φ. Moreover, the condition that v is separating is equivalent to the requirement
that φ be faithful: that is, if x is positive and φ(x) = 0, then x = 0.

Example 1. Let (X,Σ,Σ0) be a measurable space, and assume that L∞(X) is a von Neumann algebra
(we have seen that this is always the case if (X,Σ) admits a finite measure having Σ0 as the collection of
sets of measure zero). We can identify ultraweakly continuous states on L∞(X) with probability measures
on X having the property that µ(Y ) = 0 for Y ∈ Σ0. Such a state is faithful if and only if the converse
holds: that is, if µ(Y ) 6= 0 for Y /∈ Σ0. Given such a choice of measure µ, we can identify the corresponding
representation with L2(X,µ). Since µ is finite, we can regard L∞(X) as a subspace of L2(X,µ). The
operator S in this case is actually bounded, and carries each function f to its complex conjugate. Since S is
antiunitary we can identify S with J . Conjugation by J induces a map from A to itself, also given by f 7→ f .

If µ and µ′ are two probability measures which both define faithful traces, then the Radon-Nikodym
theorem implies that µ = λµ′ for a unique measurable function λ : X → R>0. Then multiplication by λ1/2

gives an isometric isomorphism from L2(X,µ) to L2(X,µ′). By means of these isomorphisms, we see that
the representation L2(X,µ) is canonically independent of the choice of µ. This Hilbert space is often referred
to as the space of half measures on X.

Example 2. Let A = B(W ) for some Hilbert space W . We have seen that A admits a faithful ultraweakly
continuous state if and only if W is separable. Let us now assume that W has countable dimension, and
choose an orthonormal basis e1, e2, . . . ,∈W . Then an element x ∈ A is determined by its matrix coefficients
xij = (xej , ei).

Choose a sequence of nonnegative real numbers λ1, λ2, . . . with
∑
λi = 1. Then the diagonal matrix with

diagonal entries λi is a positive trace class operator y on W , so that the functional

x 7→ tr(xy) =
∑

λixi,i

is a positive ultraweakly continuous state φ on A. Note that

φ(xx∗) =
∑
i,j

λi||xi,j ||2.

If each λi is positive, then φ is faithful. Let us henceforth assume this.
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Let V =
⊕

i≥1W be a direct sum of countably many copies of W . Then V has an orthonormal basis

ei,j , where ei,j denotes the image of ei in the jth copy of W . Set v =
∑
λ
1/2
i ei,i. Then v is a vector of V

satisfying satisfying φ(x) = (xv, v). It is not hard to see that v is a cyclic and separating vector for V .
If x ∈ B(W ), we have

xv = (
∑
i

λ
1/2
1 xi1ei,

∑
i

λ1/22xi2ei, . . .) =
∑
i,j

λ
1/2
j xi,jei,j .

Similarly,

x∗v =
∑
i,j

λ
1/2
i xi,jej,i.

It follows that the unbounded operator S satisfies

S(µei,j) = µ
λ
1/2
i

λ
1/2
j

ej,i

for each complex scalar µ. Writing the polar decomposition S = J∆1/2 = ∆−1/2J , we have

J(
∑

µi,jei,j) =
∑

µi,jej,i

∆−1/2(
∑

µi,jei,j) =
∑ λ

1/2
i

λ
1/2
j

µi,jei,j .

There is a map from V to B(W ), which carries
∑
µi,jei,j to the operator x with matrix coefficients µi,j .

This map is injective, and identifies W with the two-sided ∗-ideal of B(W ) consisting of Hilbert-Schmidt
operators. Let us denote this ideal by I. We note that the action of A on V corresponds to the action of A
on I by left multiplication, and that the operator J on V is given by the map x 7→ x∗ on I. Conjugation
by J therefore exchanges the left action of A on I with the right action of A on I. We also note that the
modular operator ∆1/2 determines a 1-parameter group of unitary operators ∆it, given by

∆it(
∑

µj,ke
j,k) =

∑
eit(log λk−log λj)µj,kej,k.

Translating to the ideal I, we see that ∆it is given by conjugation by the unitary operator ej 7→ eit log λj =
λitj ej . From this description, it is clear that conjugation by ∆it preserves A (as a space of operators on I).

The analysis of Example 2 suggests that things would be particularly simple if we could take all of the
scalars λi to be equal to 1: that is, if we could take φ to be given by

φ(x) = tr(x) =
∑

(xei, ei).

Unforunately, this operator is not bounded (unless W is finite-dimensional). It is therefore convenient to
allow a more general notion of “state” which permits this sort of unbounded behavior.

Definition 3. Let A be a von Neumann algebra and let A+ be the set of positive elements of A. A weight
on A is a function φ : A+ → R≥0 ∪{∞} satisfying the following conditions:

(a) φ(0) = 0

(b) φ(x+ y) = φ(x) + φ(y)

(c) φ(λx) = λφ(x) for λ ∈ R≥0 (with the conventiion that 0∞ = 0).
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A weight φ said to be normal if it is lower semi-continuous with respect to the ultraweak topology on A+.
We say that φ is faithful if φ(x) = 0 implies that x = 0, and semi-finite if, whenever φ(x) = ∞ and t < ∞,
we can find y ≤ x with t ≤ φ(y) <∞.

Example 4. If φ is a state on A, then the restriction φ|A+ is a weight on A. This weight is normal if and
only if φ is ultraweakly continuous.

Construction 5. If φ is a weight on a von Neumann algebra A, we define nφ to be the subset of A consisting
of those elements x such that φ(x∗x) <∞. Note that this is a left ideal of A: if x ∈ nφ and y ∈ A, we have

φ(x∗y∗yx) ≤ φ(x∗||y||2x) = ||y||2φ(x∗x) <∞

so that yx ∈ nφ.
We can equip nφ with an inner product with associated quadratic form given by (x, x) = φ(x∗x). We

denote the Hilbert space completion of nφ by Vφ. The left action of A on nφ extends to a representation of
A on Vφ. This action is ultraweakly continuous if φ is normal.

Representations of A having the form Vφ are called semicyclic representations. Suppose that φ is normal,
faithful, and semi-finite. Let j denote the canonical map from nφ to Vφ (since φ is faithful, this map is
injective). We can then define an unbounded operator S0 on Vφ by the formula

S0(j(x)) = j(x∗)

for x ∈ nφ∩n∗φ. The main results of Tomita-Takesaki theory extend to this setting: S0 is closable, its closure

S has a polar decomposition S = J∆1/2, conjugation by J exchanges A with its commutant, and so forth.

Remark 6. One can show that every von Neumann algebra A admits a faithful semifinite normal weight
φ. The associated semicyclic representation is denoted by L2(A). Our earlier arguments can be generalized
to show that L2(A) is canonically independent of the choice of φ.

Example 7. Let A = L∞(X) be an abelian von Neumann algebra, for some measurable space (X,Σ,Σ0).
There is a one-to-one correspondence between semifinite normal weights on A and semi-finite measures µ on
(X,Σ) with µ(Y ) = 0 for Y ∈ Σ0. The corresponding weight is faithful if and only if µ(Y ) 6= 0 for Y /∈ Σ0.

Example 8. Let W be an arbitrary Hilbert space, let Btc(W ) be the collection of trace-class operators
on W . Then there is a faithful semi-finite normal weight φ : B(W )+ → R≥0 ∪{∞}, given by φ(x) ={

tr(x) if x ∈ Btc(W )

∞ otherwise.
The associated semicyclic representation of A can be identified with the space of

Hilbert-Schmidt operators on W . In this case, ∆ is the identity, and J is given by the construction x 7→ x∗.
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