Math 261y: von Neumann Algebras (Lecture 33)

November 21, 2011

Let us begin by recalling our general setup.
Notation 1. Let A be a von Neumann algebra and V a representation of A containing a cyclic and separating vector v. We let $A_{\mathbb{R}}$ denote the real vector space of self-adjoint elements of A, and $A_{\mathbb{R}}^{\prime}$ the self-adjoint elements of the commutant of A. We let K denote the real Hilbert space given by the closure of the set $A_{\mathbb{R}} v \subseteq V$, and $L=i K$. Let P and Q denote the orthogonal projections onto K and L, respectively (so that P and Q are real linear operators on V). Then we have a polar decomposition

$$
P-Q=J|P-Q|,
$$

where $|P-Q|=(2-P-Q)^{1 / 2}(P+Q)^{1 / 2}$. The operator $|P-Q|$ commutes with J, P and Q, while J satisfies

$$
J P=(1-Q) J \quad J Q=(1-P) J .
$$

It follows that $J(P+Q)=(2-P-Q) J$, and therefore $J(P+Q)^{1 / 2} J=(2-P-Q)^{1 / 2}$. We have unitary operators $\Delta^{i t}: V \rightarrow V$ for every real number t, via the formula $\Delta^{i t}=(2-P-Q)^{i t}(P+Q)^{-i t}$.

Let us now recall what we proved in the last lecture:
Proposition 2. Let $x^{\prime} \in A^{\prime}$ and let θ be a real number with $-\pi<\theta<\pi$, so that $\Re\left(e^{\frac{i \theta}{2}}\right)>0$. Then there exists an element $x=x_{\theta} \in A$ such that

$$
(P-Q) x^{\prime}(P-Q)=e^{i \frac{\theta}{2}}(2-P-Q) x(P+Q)+e^{-i \frac{\theta}{2}}(P+Q) x_{\theta}(2-P-Q) .
$$

In this lecture, we will establish the following relationship between x_{θ} and x^{\prime} :
Proposition 3. We have

$$
x_{\theta}=\frac{1}{2} \int \frac{e^{-\theta t}}{\cosh (\pi t)} \Delta^{i t} J x^{\prime} J \Delta^{-i t} d t .
$$

Remark 4. Here we have made use of integration in the Banach space $B(V)$ of all bounded operators on V. More concretely, the formula of Proposition has the following interpretation: for every pair of vectors $w, w^{\prime} \in V$, we have an equality of complex numbers

$$
\left(x_{\theta} w, w^{\prime}\right)=\frac{1}{2} \int \frac{e^{-\theta t}}{\cosh (\pi t)}\left(\Delta^{i t} J x^{\prime} J \Delta^{-i t} w, w^{\prime}\right) d t .
$$

Let us assume Proposition 3 and use it to complete the proof of our main result:
Corollary 5. Let $x^{\prime} \in A^{\prime}$. Then, for every real number t, the operator $\Delta^{i t} J x^{\prime} J \Delta^{-i t}$ belongs to A.
Proof. Since $A=A^{\prime \prime}$, it will suffice to show that each of the operators $\Delta^{i t} J x^{\prime} J \Delta^{-i t}$ commutes with each operator in A^{\prime}. Fix $y^{\prime} \in A^{\prime}$. For every real number t, let $F(t)$ denote the operator given by the commutator of y^{\prime} with $\Delta^{i t} J x^{\prime} J \Delta^{-i t}$. We wish to prove that $F(t)=0$ for all t. Fix $w, w^{\prime} \in V$, and set $f(t)=\left(F(t) w, w^{\prime}\right)$;
we wish to prove that $f(t)=0$ for all $t \in \mathbb{R}$. Note that the function $t \mapsto f(t)$ is bounded and continuous, so that the functor $t \mapsto \frac{f(t)}{\cosh (\pi t)}$ decays as fast as $e^{-\pi t}$ as $t \rightarrow \infty$ and $e^{\pi t}$ as $t \rightarrow-\infty$. It follows that for any z with $-\pi<\Re(z)<\pi$, the integral

$$
g(z)=\int e^{-z t} \frac{f(t)}{\cosh (\pi t)} d t
$$

is well-defined, and depends holomorphically on z. Using Proposition 3, we see that $g(\theta)=0$ for $-\pi<\theta<\pi$. It follows that $g=0$. In particular, g vanishes on the imaginary axis, so that the Fourier transform of $\frac{f(t)}{\cosh (\pi t)}$ vanishes. It follows that $f(t)=0$ for all $t \in \mathbb{R}$.

We now turn to the proof of Proposition 3. We will henceforth regard θ as fixed, and simply write x for x_{θ}. We wish to prove that

$$
x=\frac{1}{2} \int \frac{e^{-\theta t}}{\cosh (\pi t)} \Delta^{i t} J x^{\prime} J \Delta^{-i t} d t
$$

Since the operator $|P-Q|=(P+Q)^{1 / 2}(2-P-Q)^{1 / 2}$ is injective, it will suffice to prove this equality after multiplying both sides by $|P-Q|$ on the left and the right. Using the fact that $|P-Q|$ commutes with $\Delta^{i t}$ and $|P-Q| J=P-Q$, we can rewrite the desired equality as

$$
|P-Q| x|P-Q|=\frac{1}{2} \int \frac{e^{-\theta t}}{\cosh (\pi t)} \Delta^{i t}(P-Q) x^{\prime}(P-Q) \Delta^{-i t} d t
$$

Using the relationship between x and x^{\prime}, we see that the right hand side is given by

$$
\frac{1}{2} \int \frac{e^{-\theta t}}{\cosh (\pi t)}\left(e^{i \frac{\theta}{2}} \Delta^{i t}(2-P-Q) x(P+Q) \Delta^{-i t}+e^{-i \frac{\theta}{2}} \Delta^{i t}(P+Q) x(2-P-Q) \Delta^{-i t}\right) d t
$$

Using the definition of $\Delta^{i t}$, we can write this as

$$
\frac{1}{2} \int \frac{e^{-\theta t}}{\cosh (\pi t)}\left(e^{i \frac{\theta}{2}}(2-P-Q)^{1+i t}(P+Q)^{-i t} x(P+Q)^{1+i t}(2-P-Q)^{-i t}+e^{-i \frac{\theta}{2}}(2-P-Q)^{i t}(P+Q)^{1-i t} x(P+Q)^{i t}(2-P-Q)^{1-i t}\right) d t
$$

Meanwhile, the left hand side can be written as

$$
(P+Q)^{1 / 2}(2-P-Q)^{1 / 2} x(P+Q)^{1 / 2}(2-P-Q)^{1 / 2}
$$

To compare these, let us consider, for each complex number z with $\frac{-1}{2} \leq \Re(z) \leq \frac{1}{2}$, the operator

$$
F(z)=(P+Q)^{1 / 2-z}(2-P-Q)^{1 / 2+z} x(P+Q)^{1 / 2+z}(2-P-Q)^{1 / 2-z}
$$

Then the desired inequality can be rewritten as

$$
F(0)=\frac{1}{2} \int \frac{e^{-\theta t}}{\cosh (\pi t)}\left(e^{i \frac{\theta}{2}} F\left(i t+\frac{1}{2}\right)+e^{-i \frac{\theta}{2}} F\left(i t-\frac{1}{2}\right) d t .\right.
$$

Fix vectors $w, w^{\prime} \in V$, and define $f(z)=\left(F(z) w, w^{\prime}\right)$. We then wish to prove an equality of complex numbers

$$
f(0)=\frac{1}{2} \int \frac{e^{-\theta t}}{\cosh (\pi t)}\left(e^{i \frac{\theta}{2}} f\left(i t+\frac{1}{2}\right)+e^{-i \frac{\theta}{2}} f\left(i t-\frac{1}{2}\right) d t\right.
$$

Note that the function f is bounded on the set $\left\{z \in \mathbf{C}: \frac{-1}{2} \leq \Re(z) \leq \frac{1}{2}\right\}$, and holomorphic on the interior of this region. We define a function g on the same region by the formula

$$
g(z)=\frac{\pi e^{i \theta z} f(z)}{\sin (\pi z)}
$$

Then $g(z)$ has a simple pole at the origin. Moreover the numerator of $g(z)$ is bounded in absolute value by some constant multiple of $e^{-\theta \Im(z)}$, while the denominator grows like $e^{\pi|\Im(z)|}$ as $\Im(z) \rightarrow \pm \infty$. Since $-\pi<\theta<\pi$, it follows that differential $g(z)$ decays exponentially in $|\Im(z)|$. Applying the Cauchy integral formula to rectangles bounded by the vertices $\pm \frac{1}{2} \pm i t$ and taking the limit as $t \rightarrow \infty$, we obtain the formula

$$
\begin{aligned}
f(0) & =\operatorname{Res}_{0}(g) \\
& =\frac{1}{2 \pi i}\left(i \int g\left(\frac{1}{2}+i t\right) d t-i \int g\left(i t-\frac{1}{2}\right) d t\right) \\
& =\frac{1}{2} \int \frac{e^{i \theta\left(\frac{1}{2}+i t\right)}}{\sin \left(\frac{\pi}{2}+i \pi t\right)} f\left(i t+\frac{1}{2}\right)-\frac{e^{i \theta}\left(i t-\frac{1}{2}\right)}{\sin \left(i \pi t-\frac{\pi}{2}\right.} f\left(i t-\frac{1}{2}\right) d t \\
& =\frac{1}{2} \int e^{i \frac{\theta}{2}} \frac{e^{-\theta t}}{\cosh (\pi t)} f\left(i t+\frac{1}{2}\right)-e^{-i \frac{\theta}{2}} \frac{e^{-\theta t}}{-\cosh (\pi t)} f\left(i t-\frac{1}{2}\right) d t \\
& =\frac{1}{2} \int e^{i \frac{\theta}{2}} \frac{e^{-\theta t}}{\cosh (\pi t)} f\left(i t+\frac{1}{2}\right)+e^{-i \frac{\theta}{2}} \frac{e^{-\theta t}}{\cosh (\pi t)} f\left(i t-\frac{1}{2}\right) d t .
\end{aligned}
$$

as desired.

