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Let us begin by recalling our general setup.

Notation 1. Let A be a von Neumann algebra and V a representation of A containing a cyclic and separating
vector v. We let AR denote the real vector space of self-adjoint elements of A, and A′R the self-adjoint elements
of the commutant of A. We let K denote the real Hilbert space given by the closure of the set ARv ⊆ V ,
and L = iK. Let P and Q denote the orthogonal projections onto K and L, respectively (so that P and Q
are real linear operators on V ). Then we have a polar decomposition

P −Q = J |P −Q|,

where |P − Q| = (2 − P − Q)1/2(P + Q)1/2. The operator |P − Q| commutes with J , P and Q, while J
satisfies

JP = (1−Q)J JQ = (1− P )J.

It follows that J(P +Q) = (2− P −Q)J , and therefore J(P +Q)1/2J = (2− P −Q)1/2. We have unitary
operators ∆it : V → V for every real number t, via the formula ∆it = (2− P −Q)it(P +Q)−it.

Let us now recall what we proved in the last lecture:

Proposition 2. Let x′ ∈ A′ and let θ be a real number with −π < θ < π, so that <(e
iθ
2 ) > 0. Then there

exists an element x = xθ ∈ A such that

(P −Q)x′(P −Q) = ei
θ
2 (2− P −Q)x(P +Q) + e−i

θ
2 (P +Q)xθ(2− P −Q).

In this lecture, we will establish the following relationship between xθ and x′:

Proposition 3. We have

xθ =
1

2

∫
e−θt

cosh(πt)
∆itJx′J∆−itdt.

Remark 4. Here we have made use of integration in the Banach space B(V ) of all bounded operators on
V . More concretely, the formula of Proposition has the following interpretation: for every pair of vectors
w,w′ ∈ V , we have an equality of complex numbers

(xθw,w
′) =

1

2

∫
e−θt

cosh(πt)
(∆itJx′J∆−itw,w′)dt.

Let us assume Proposition 3 and use it to complete the proof of our main result:

Corollary 5. Let x′ ∈ A′. Then, for every real number t, the operator ∆itJx′J∆−it belongs to A.

Proof. Since A = A′′, it will suffice to show that each of the operators ∆itJx′J∆−it commutes with each
operator in A′. Fix y′ ∈ A′. For every real number t, let F (t) denote the operator given by the commutator
of y′ with ∆itJx′J∆−it. We wish to prove that F (t) = 0 for all t. Fix w,w′ ∈ V , and set f(t) = (F (t)w,w′);
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we wish to prove that f(t) = 0 for all t ∈ R. Note that the function t 7→ f(t) is bounded and continuous, so

that the functor t 7→ f(t)
cosh(πt) decays as fast as e−πt as t→∞ and eπt as t→ −∞. It follows that for any z

with −π < <(z) < π, the integral

g(z) =

∫
e−zt

f(t)

cosh(πt)
dt

is well-defined, and depends holomorphically on z. Using Proposition 3, we see that g(θ) = 0 for −π < θ < π.

It follows that g = 0. In particular, g vanishes on the imaginary axis, so that the Fourier transform of f(t)
cosh(πt)

vanishes. It follows that f(t) = 0 for all t ∈ R.

We now turn to the proof of Proposition 3. We will henceforth regard θ as fixed, and simply write x for
xθ. We wish to prove that

x =
1

2

∫
e−θt

cosh(πt)
∆itJx′J∆−itdt.

Since the operator |P −Q| = (P +Q)1/2(2−P −Q)1/2 is injective, it will suffice to prove this equality after
multiplying both sides by |P −Q| on the left and the right. Using the fact that |P −Q| commutes with ∆it

and |P −Q|J = P −Q, we can rewrite the desired equality as

|P −Q|x|P −Q| = 1

2

∫
e−θt

cosh(πt)
∆it(P −Q)x′(P −Q)∆−itdt.

Using the relationship between x and x′, we see that the right hand side is given by

1

2

∫
e−θt

cosh(πt)
(ei

θ
2 ∆it(2− P −Q)x(P +Q)∆−it + e−i

θ
2 ∆it(P +Q)x(2− P −Q)∆−it)dt

Using the definition of ∆it, we can write this as

1

2

∫
e−θt

cosh(πt)
(ei

θ
2 (2−P−Q)1+it(P+Q)−itx(P+Q)1+it(2−P−Q)−it+e−i

θ
2 (2−P−Q)it(P+Q)1−itx(P+Q)it(2−P−Q)1−it)dt

Meanwhile, the left hand side can be written as

(P +Q)1/2(2− P −Q)1/2x(P +Q)1/2(2− P −Q)1/2.

To compare these, let us consider, for each complex number z with −12 ≤ <(z) ≤ 1
2 , the operator

F (z) = (P +Q)1/2−z(2− P −Q)1/2+zx(P +Q)1/2+z(2− P −Q)1/2−z.

Then the desired inequality can be rewritten as

F (0) =
1

2

∫
e−θt

cosh(πt)
(ei

θ
2F (it+

1

2
) + e−i

θ
2F (it− 1

2
)dt.

Fix vectors w,w′ ∈ V , and define f(z) = (F (z)w,w′). We then wish to prove an equality of complex numbers

f(0) =
1

2

∫
e−θt

cosh(πt)
(ei

θ
2 f(it+

1

2
) + e−i

θ
2 f(it− 1

2
)dt.

Note that the function f is bounded on the set {z ∈ C : −12 ≤ <(z) ≤ 1
2}, and holomorphic on the

interior of this region. We define a function g on the same region by the formula

g(z) =
πeiθzf(z)

sin(πz)
.
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Then g(z) has a simple pole at the origin. Moreover the numerator of g(z) is bounded in absolute value
by some constant multiple of e−θ=(z), while the denominator grows like eπ|=(z)| as =(z) → ±∞. Since
−π < θ < π, it follows that differential g(z) decays exponentially in |=(z)|. Applying the Cauchy integral
formula to rectangles bounded by the vertices ± 1

2 ± it and taking the limit as t→∞, we obtain the formula

f(0) = Res0(g)

=
1

2πi
(i

∫
g(

1

2
+ it)dt− i

∫
g(it− 1

2
)dt)

=
1

2

∫
eiθ(

1
2+it)

sin(π2 + iπt)
f(it+

1

2
)−

eiθ(it− 1
2 )

sin(iπt− π
2

f(it− 1

2
)dt

=
1

2

∫
ei
θ
2

e−θt

cosh(πt)
f(it+

1

2
)− e−i θ2 e−θt

− cosh(πt)
f(it− 1

2
)dt

=
1

2

∫
ei
θ
2

e−θt

cosh(πt)
f(it+

1

2
) + e−i

θ
2

e−θt

cosh(πt)
f(it− 1

2
)dt.

as desired.
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