# Math 261y: von Neumann Algebras (Lecture 31) 

November 16, 2011

Let us recall the setting of the last lecture.
Notation 1. Let $A$ be a von Neumann algebra and $V$ a representation of $A$ containing a cyclic and separating vector $v$. We let $K$ denote the real Hilbert space given by the closure of the set $\left\{x v: x^{*}=x\right\}$, and $L$ the real Hilbert space given by the closure of the set $\left\{x v: x^{*}=-x\right\}$. Let $P$ and $Q$ denote the orthogonal projections onto $K$ and $L$, respectively (so that $P$ and $Q$ are real linear operators on $V$ ). Then we have a polar decomposition

$$
P-Q=J|P-Q|
$$

where $|P-Q|=(2-P-Q)^{1 / 2}(P+Q)^{1 / 2}$. The operator $|P-Q|$ commutes with $J, P$ and $Q$, while $J$ satisfies

$$
J P=(1-Q) J \quad J Q=(1-P) J
$$

It follows that $J(P+Q)=(2-P-Q) J$, and therefore $J(P+Q)^{1 / 2} J=(2-P-Q)^{1 / 2}$.
Note that in the present setting, $V$ is a complex Hilbert space and we have $L=i K$. It follows that $Q i=i P$. In particular, $i(P+Q)=i P+i Q=Q i+P i=(P+Q) i$, so that $P+Q$ is a positive C-linear operator.

Construction 2. Let $T: V \rightarrow V$ be a normal C-linear bounded operator and let $\sigma(T)$ be its spectrum. Recall that for every bounded Borel measurable function $f$, we can define a new operator $f(T) \in B(V)$ using the Borel functional calculus. We will be particularly interested in the case where $T$ is a positive operator, so that $\sigma$ is a bounded subset of $\mathbb{R}_{\geq 0}$. For every complex number $z$ with $\Re(z) \geq 0$, we can take $f$ to be the function

$$
t \mapsto t^{z}= \begin{cases}0 & \text { if } t=0 \\ e^{z \log (t)} & \text { if } t>0\end{cases}
$$

(Note that this function is bounded on bounded subsets of $\mathbb{R}$.) In this case, we will denote the operator $f(T)$ by $T^{z}$. It belongs to every von Neumann subalgebra of $B(V)$ which contains $x$, and therefore commutes with every operator which commutes with $x$. Since the functional calculus is multiplicative, we have $T^{z+z^{\prime}}=$ $T^{z} T^{z^{\prime}}$ for $z, z^{\prime} \in \mathbf{C}$ with $\Re(z), \Re\left(z^{\prime}\right) \geq 0$. Note that $T^{0}$ is the projection operator which annihilates $\operatorname{ker}(T)$; in particular, $T^{0}=1$ if $T$ is injective.

Since $f(T)^{*}=\bar{f}\left(T^{*}\right)$, we see that $\left(T^{z}\right)^{*}=T^{\bar{z}}$ when $T$ is a positive operator. In particular, $T^{z}$ is selfadjoint when $z$ is real. If $T$ is injective, then $T^{i t}$ is inverse to $T^{-i t}=\left(T^{i t}\right)^{*}$ for $t \in \mathbb{R}$, so that the operators $T^{i t}$ are unitary.

If $0 \neq v \in V$ is an eigenvector for $T$ with eigenvalue $\lambda$ (that is, if $T v=\lambda v$ ), then the positivity of $T$ implies that $\lambda \geq 0$. If $T$ is injective, we even have $\lambda>0$. If $\Re(z) \geq 0$, we have $T^{z}(v)=\lambda^{z} v$.

Let us now return to the situation of interest: $V$ is a representation of $A$ with a cyclic and separating vector $v$. Now $P+Q$ and $2-P-Q$ are injective positive self-adjoint operators. We can therefore define complex powers $(P+Q)^{z}$ and $(2-P-Q)^{z}$ for $\Re(z) \geq 0$. Note that when $z=\frac{1}{2}$, this agrees with our
earlier definition (that is, we obtain the unique positive square roots of $P+Q$ and $2-P-Q$ ). Since $J$ is an antiunitary map satisfying

$$
J(P+Q) J^{-1}=2-P-Q
$$

we deduce that

$$
J(P+Q)^{z} J^{-1}=(2-P-Q)^{\bar{z}}
$$

for every complex number $z$ satisfying $\Re(z) \geq 0$. We are primarily interested in the case where $z$ is purely imaginary. In this case, we obtain

$$
J(P+Q)^{i t} J^{-1}=(2-P-Q)^{-i t}
$$

or $J(P+Q)^{i t}=(2-P-Q)^{-i t} J$.
Definition 3. For every real number $t$, we let $\Delta^{i t}$ denote the unitary operator given by $(2-P-Q)^{i t}(P+Q)^{-i t}$.
Remark 4. Recall that the unbounded operator $S: V \rightarrow V$ given by the closure of the operator $x v \mapsto x^{*} v$ has a polar decomposition $S=J \Delta^{1 / 2}$, where $\Delta^{1 / 2}=(2-P-Q)^{1 / 2}(P+Q)^{-1 / 2}$. Thus Definition 3 is at least morally consistent with our earlier notation. In fact, one can extend Construction 2 to define complex powers of possible unbounded positive self-adjoint operators, so that the unitary operators $\Delta^{i t}$ can be obtained directly from the unbounded operator $\Delta^{1 / 2}$.

Remark 5. Conjugation by $J$ carries $(P+Q)^{i t}$ to $(2-P-Q)^{-i t}$. It follows that $J$ commutes with $\Delta^{i t}$ for every real number $t$.

We can now state more fully the main results of Tomita-Takesaki theory.
Theorem 6. Let $A$ be a von Neumann algebra, let $V$ be a representation of $A$ containing a cyclic and separating vector $v$, and define $J$ and $\Delta^{i t}$ as above. Then:
(1) We have $A^{\prime}=J A J$.
(2) For every real number $t$, conjugation by $\Delta^{i t}$ preserves the von Neumann algebras $A$ and $A^{\prime}$.
(3) If $c$ belongs to the center of $A$, then $J c J=c^{*}$.

Remark 7. In the situation of Theorem ??, we get a one-parameter group of automorphisms $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ of $A$, given by $\sigma_{t}(x)=\Delta^{i t} x \Delta^{-i t}$. This family depends on the choice of $(V, v)$. Since the pair $(V, v)$ can be reconstructed from the state $\phi(x)=(x v, v)$, the construction $t \mapsto \sigma_{t}$ is called the modular flow associated to the state given by $\phi(x)=(x v, v)$.

The core of Theorem 6 is contained in the following result:
Proposition 8. In the situation of Theorem 6, for every real number $t$, conjugation by the operator $J \Delta^{i t}$ carries $A^{\prime}$ into $A$.

We will begin the proof of Proposition 8 in the next lecture. Let us assume Proposition 8 for the time being and explain how it leads to a proof of the whole of Theorem 6.

Proof of Theorem 6. Taking $t=0$ in Proposition 8, we see that $J A^{\prime} J \subseteq A$. To prove (1), it suffices to verify the reverse inclusion. Equivalently, we must show that $J A J \subseteq A^{\prime}$.

Note that the vector $v$ belongs to the real Hilbert space $K$, so that $P v=v$. If $x \in A$ is skew-adjoint, then we have $(x v, v)=\left(v, x^{*} v\right)=(v,-x v)=-\overline{(x v, v)}$. That is, the complex number $(x v, v)$ is purely imaginary. It follows that $v \in L^{\perp}$, so that $Q v=0$. Thus $(P+Q) v=v$ and $(2-P-Q) v=v$. It follows that $v$ is fixed by $(P+Q)^{1 / 2}$ and $(2-P-Q)^{1 / 2}$, and therefore also by $|P-Q|=(P+Q)^{1 / 2}(2-P-Q)^{1 / 2}$. Since $v$ is also fixed by $J|P-Q|=P-Q$, we deduce that $J v=v$.

Let $A_{\mathbb{R}}$ denote the set of self-adjoint elements of $A$. Since $J(K)=L^{\perp}$, the complex number $(J x v, y v)$ is real for every pair of elements $x, y \in A_{\mathbb{R}}$. We therefore have

$$
(J x v, y v)=(y v, J x v)=(x v, J y v)
$$

so that $(y J x v, v)=(v, x J y v)$. Both sides of this equation are $\mathbf{C}$ linear functions of $y$ and and $\mathbf{C}$-antilinear in $x$, so the identity holds for all $x, y \in A$.

Let $z^{\prime} \in A^{\prime}$. Using Proposition 8 , we deduce that $J z^{\prime} J \in A$. Replacing $y$ by $y J z^{\prime} J$ in the above identity, we get

$$
\left(y J z^{\prime} J J x v, v\right)=\left(v, x J y J z^{\prime} J v\right)
$$

or $\left(y J z^{\prime} x v, v\right)=\left(v, x J y J z^{\prime} v\right)$. Since $z^{\prime}$ commutes with $x$, the left hand side is given by

$$
\begin{aligned}
\left(y J z^{\prime} x v, v\right) & =\left(y J x z^{\prime} v, v\right) \\
& =\left(J x z^{\prime} v, y^{*} v\right) \\
& =\left(J y^{*} v, x z^{\prime} v\right) \\
& =\left(x^{*} J y^{*} v, z^{\prime} v\right) \\
& =\left(x^{*}\left(J y^{*} J\right) v, z^{\prime} v\right) .
\end{aligned}
$$

Similarly, the right hand side is given by

$$
\begin{aligned}
\left(v, x J y J z^{\prime} v\right) & =\left(x^{*} v, J y J z^{\prime} v\right) \\
& =\left(y J z^{\prime} v, J x^{*} v\right) \\
& =\left(J z^{\prime} v, y^{*} J x^{*} v\right) \\
& =\left(J y^{*} J x^{*} v, z^{\prime} v\right) \\
& =\left(\left(J y^{*} J\right) x^{*} v, z^{\prime} v\right)
\end{aligned}
$$

Since $v$ is a separating vector, $A^{\prime} v$ is dense in $V$. Hence the equalities

$$
\left(x^{*} J y^{*} J v, z^{\prime} v\right)=\left(\left(J y^{*} J\right) x^{*} v, z^{\prime} v\right)
$$

imply that $x^{*}\left(J y^{*} J\right) v=\left(J y^{*} J\right) x^{*} v$ for all $x, y \in A$. Replacing $x^{*}$ by $x z$ and $y^{*}$ by $y$, we obtain

$$
x z(J y J) v=(J y J) x z v .
$$

The same identity gives $z(J y J) v=(J y J) z v$, so we can rewrite our equality as

$$
x(J y J) z v=(J y J) x z v
$$

Since $v$ is a cyclic vector, $A v$ is dense in $V$. It follows that $x(J y J)=(J y J) x$ for all $x, y \in A$. This completes the proof of (1).

To prove (2), we note that for every real number $t$ we have

$$
\Delta^{i t} A \Delta^{-i t}=\Delta^{i t} J A^{\prime} J \Delta^{-i t} \subseteq A
$$

by virtue of Proposition 8. The reverse inequality follows by replacing $t$ with $-t$.
We now prove (3). It is easy to see that the collection of those elements $c \in Z(A)$ which satisfy $J c J=c^{*}$ is a $\mathbf{C}$-vector space which is closed in the norm topology. It will therefore suffice to show that $J c J=c^{*}$ in the case where $c$ is a central projection of $A$. In this case, we can decompose $A$ as a product $A_{-} \times A_{+}$and $V$ as a product $V_{-} \times V_{+}$, so that $c$ is given by orthogonal projection onto $V_{-}$. Unwinding the definitions, we note that $J$ decomposes into a pair of antiunitary involutions on $V_{-}$and $V_{+}$. In particular, $J$ commutes with the orthogonal projection onto $V_{-}$, so that $J c J=c=c^{*}$.

