
Math 261y: von Neumann Algebras (Lecture 31)

November 16, 2011

Let us recall the setting of the last lecture.

Notation 1. Let A be a von Neumann algebra and V a representation of A containing a cyclic and separating
vector v. We let K denote the real Hilbert space given by the closure of the set {xv : x∗ = x}, and L the
real Hilbert space given by the closure of the set {xv : x∗ = −x}. Let P and Q denote the orthogonal
projections onto K and L, respectively (so that P and Q are real linear operators on V ). Then we have a
polar decomposition

P −Q = J |P −Q|,

where |P − Q| = (2 − P − Q)1/2(P + Q)1/2. The operator |P − Q| commutes with J , P and Q, while J
satisfies

JP = (1−Q)J JQ = (1− P )J.

It follows that J(P +Q) = (2− P −Q)J , and therefore J(P +Q)1/2J = (2− P −Q)1/2.

Note that in the present setting, V is a complex Hilbert space and we have L = iK. It follows that
Qi = iP . In particular, i(P + Q) = iP + iQ = Qi + Pi = (P + Q)i, so that P + Q is a positive C-linear
operator.

Construction 2. Let T : V → V be a normal C-linear bounded operator and let σ(T ) be its spectrum.
Recall that for every bounded Borel measurable function f , we can define a new operator f(T ) ∈ B(V ) using
the Borel functional calculus. We will be particularly interested in the case where T is a positive operator,
so that σ is a bounded subset of R≥0. For every complex number z with <(z) ≥ 0, we can take f to be the
function

t 7→ tz =

{
0 if t = 0

ez log(t) if t > 0.

(Note that this function is bounded on bounded subsets of R.) In this case, we will denote the operator f(T )
by T z. It belongs to every von Neumann subalgebra of B(V ) which contains x, and therefore commutes
with every operator which commutes with x. Since the functional calculus is multiplicative, we have T z+z′

=
T zT z′

for z, z′ ∈ C with <(z),<(z′) ≥ 0. Note that T 0 is the projection operator which annihilates ker(T );
in particular, T 0 = 1 if T is injective.

Since f(T )∗ = f(T ∗), we see that (T z)∗ = T z when T is a positive operator. In particular, T z is self-
adjoint when z is real. If T is injective, then T it is inverse to T−it = (T it)∗ for t ∈ R, so that the operators
T it are unitary.

If 0 6= v ∈ V is an eigenvector for T with eigenvalue λ (that is, if Tv = λv), then the positivity of T
implies that λ ≥ 0. If T is injective, we even have λ > 0. If <(z) ≥ 0, we have T z(v) = λzv.

Let us now return to the situation of interest: V is a representation of A with a cyclic and separating
vector v. Now P + Q and 2 − P − Q are injective positive self-adjoint operators. We can therefore define
complex powers (P + Q)z and (2 − P − Q)z for <(z) ≥ 0. Note that when z = 1

2 , this agrees with our
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earlier definition (that is, we obtain the unique positive square roots of P + Q and 2 − P − Q). Since J is
an antiunitary map satisfying

J(P +Q)J−1 = 2− P −Q,

we deduce that
J(P +Q)zJ−1 = (2− P −Q)z

for every complex number z satisfying <(z) ≥ 0. We are primarily interested in the case where z is purely
imaginary. In this case, we obtain

J(P +Q)itJ−1 = (2− P −Q)−it

or J(P +Q)it = (2− P −Q)−itJ .

Definition 3. For every real number t, we let ∆it denote the unitary operator given by (2−P−Q)it(P+Q)−it.

Remark 4. Recall that the unbounded operator S : V → V given by the closure of the operator xv 7→ x∗v
has a polar decomposition S = J∆1/2, where ∆1/2 = (2 − P − Q)1/2(P + Q)−1/2. Thus Definition 3
is at least morally consistent with our earlier notation. In fact, one can extend Construction 2 to define
complex powers of possible unbounded positive self-adjoint operators, so that the unitary operators ∆it can
be obtained directly from the unbounded operator ∆1/2.

Remark 5. Conjugation by J carries (P +Q)it to (2−P −Q)−it. It follows that J commutes with ∆it for
every real number t.

We can now state more fully the main results of Tomita-Takesaki theory.

Theorem 6. Let A be a von Neumann algebra, let V be a representation of A containing a cyclic and
separating vector v, and define J and ∆it as above. Then:

(1) We have A′ = JAJ .

(2) For every real number t, conjugation by ∆it preserves the von Neumann algebras A and A′.

(3) If c belongs to the center of A, then JcJ = c∗.

Remark 7. In the situation of Theorem ??, we get a one-parameter group of automorphisms {σt}t∈R of
A, given by σt(x) = ∆itx∆−it. This family depends on the choice of (V, v). Since the pair (V, v) can be
reconstructed from the state φ(x) = (xv, v), the construction t 7→ σt is called the modular flow associated to
the state given by φ(x) = (xv, v).

The core of Theorem 6 is contained in the following result:

Proposition 8. In the situation of Theorem 6, for every real number t, conjugation by the operator J∆it

carries A′ into A.

We will begin the proof of Proposition 8 in the next lecture. Let us assume Proposition 8 for the time
being and explain how it leads to a proof of the whole of Theorem 6.

Proof of Theorem 6. Taking t = 0 in Proposition 8, we see that JA′J ⊆ A. To prove (1), it suffices to verify
the reverse inclusion. Equivalently, we must show that JAJ ⊆ A′.

Note that the vector v belongs to the real Hilbert space K, so that Pv = v. If x ∈ A is skew-adjoint, then
we have (xv, v) = (v, x∗v) = (v,−xv) = −(xv, v). That is, the complex number (xv, v) is purely imaginary.
It follows that v ∈ L⊥, so that Qv = 0. Thus (P +Q)v = v and (2− P −Q)v = v. It follows that v is fixed
by (P + Q)1/2 and (2 − P − Q)1/2, and therefore also by |P − Q| = (P + Q)1/2(2 − P − Q)1/2. Since v is
also fixed by J |P −Q| = P −Q, we deduce that Jv = v.
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Let AR denote the set of self-adjoint elements of A. Since J(K) = L⊥, the complex number (Jxv, yv) is
real for every pair of elements x, y ∈ AR. We therefore have

(Jxv, yv) = (yv, Jxv) = (xv, Jyv)

so that (yJxv, v) = (v, xJyv). Both sides of this equation are C linear functions of y and and C-antilinear
in x, so the identity holds for all x, y ∈ A.

Let z′ ∈ A′. Using Proposition 8, we deduce that Jz′J ∈ A. Replacing y by yJz′J in the above identity,
we get

(yJz′JJxv, v) = (v, xJyJz′Jv)

or (yJz′xv, v) = (v, xJyJz′v). Since z′ commutes with x, the left hand side is given by

(yJz′xv, v) = (yJxz′v, v)

= (Jxz′v, y∗v)

= (Jy∗v, xz′v)

= (x∗Jy∗v, z′v)

= (x∗(Jy∗J)v, z′v).

Similarly, the right hand side is given by

(v, xJyJz′v) = (x∗v, JyJz′v)

= (yJz′v, Jx∗v)

= (Jz′v, y∗Jx∗v)

= (Jy∗Jx∗v, z′v)

= ((Jy∗J)x∗v, z′v).

Since v is a separating vector, A′v is dense in V . Hence the equalities

(x∗Jy∗Jv, z′v) = ((Jy∗J)x∗v, z′v)

imply that x∗(Jy∗J)v = (Jy∗J)x∗v for all x, y ∈ A. Replacing x∗ by xz and y∗ by y, we obtain

xz(JyJ)v = (JyJ)xzv.

The same identity gives z(JyJ)v = (JyJ)zv, so we can rewrite our equality as

x(JyJ)zv = (JyJ)xzv.

Since v is a cyclic vector, Av is dense in V . It follows that x(JyJ) = (JyJ)x for all x, y ∈ A. This completes
the proof of (1).

To prove (2), we note that for every real number t we have

∆itA∆−it = ∆itJA′J∆−it ⊆ A

by virtue of Proposition 8. The reverse inequality follows by replacing t with −t.
We now prove (3). It is easy to see that the collection of those elements c ∈ Z(A) which satisfy JcJ = c∗

is a C-vector space which is closed in the norm topology. It will therefore suffice to show that JcJ = c∗ in
the case where c is a central projection of A. In this case, we can decompose A as a product A− × A+ and
V as a product V− × V+, so that c is given by orthogonal projection onto V−. Unwinding the definitions,
we note that J decomposes into a pair of antiunitary involutions on V− and V+. In particular, J commutes
with the orthogonal projection onto V−, so that JcJ = c = c∗.

3


