Math 261y: von Neumann Algebras (Lecture 30)

November 13, 2011

In the last lecture, we asserted the following without proof:
Theorem 1. Let A be a von Neumann algebra, V a representation of A with a cyclic and separating vector v, and let $S=J \Delta^{\frac{1}{2}}$ be the closure of the operator $x v \mapsto x^{*} v$. Then:
(1) We have $A^{\prime}=J A J$. That is, conjugation by J induces a conjugate-linear isomorphism of A with its commutant A^{\prime}.
(2) If $z \in Z(A)$, then $J z=z^{*} J$.

Our goal in this lecture is to begin the proof of Theorem 1. Our first step is to better understand the operator $\Delta^{\frac{1}{2}}$. We have already seen that if $T: V \rightarrow V$ is a positive densely defined injective self-adjoint operator, then T has the form $G F^{-1}$, where $F, G: V \rightarrow V$ are positive bounded injective operators satisfying $F^{2}+G^{2}=1$. Actually, in what follows, it will be convenient to have a slight variation on this statement (obtained by multiplying F and G by $\sqrt{2}$):

Lemma 2. Let $T: V \rightarrow V$ be a positive, densely defined, injective, self-adjoint unbounded operator from a Hilbert space V to itself. Then T can be written uniquely in the form $G F^{-1}$, where $F, G: V \rightarrow V$ are positive bounded injective operators satisfying $F^{2}+G^{2}=1$. Conversely, for every such pair (F, G), the map $G F^{-1}$ is a densely defined positive self-adjoint unbounded operator on V.

Our next goal is to try to locate the operators F and G in the situation of Theorem 1. In what follows, we will think of V as a real Hilbert space. Let $K_{0} \subseteq V$ denote the real subspace consisting of all vectors of the form $x v$, where $x \in A$ is self-adjoint, and let $K \subseteq V$ denote the closure of K. Similarly, we let $L_{0} \subseteq V$ denote the real subspace consisting of all vectors of the form $x v$ where $x \in A$ is skew-adjoint, and L its closure. Then K and L are real Hilbert spaces, and we have $K=i L$.

Proposition 3. In the above situation, the domain of the operator S is the space $K+L$. Moreover, we have $S\left(w+w^{\prime}\right)=w-w^{\prime}$ for $w \in K$ and $w^{\prime} \in L$.
Proof. If $w \in K_{0}$, then w belongs to the domain of S and satisfies $S(w)=w$. Since S is closed, we see that $K \subseteq \operatorname{Dom}(S)$ and S acts by the identity on K. Similarly, $L \subseteq \operatorname{Dom}(S)$ and S acts by -1 on L. This proves that $K+L \subseteq \operatorname{Dom}(S)$. Conversely, suppose that $y \in \operatorname{Dom}(S)$. Then there exists a sequence of elements $x_{i} \in A$ such that $x_{i} v \rightarrow y$ and $x_{i}^{*} v \rightarrow S(y)$. Then $\left(x_{i}+x_{i}^{*}\right) v \rightarrow y+S(y)$, so that $y+S(y) \in K$. Similarly, $y-S(y) \in L$. It follows that $y \in K+L$.

Since S is well-defined, we see that $K \cap L=0$. Moreovrer, $K+L=\operatorname{Dom}(S)$ is dense in V. Let us now abstract the essence of the above situation.

Construction 4. Let V be a real Hilbert space containing closed subspaces K and L such that $K \cap L=0$ and $K+L$ is dense in V. We define an unbounded operator $S: V \rightarrow V$ with domain $K+L$ by the formula $S\left(w+w^{\prime}\right)=w-w^{\prime}$ for $w, w^{\prime} \in V$.

Equivalently, we define S so that the graph Γ of S is given by

$$
\left\{\left(u, u^{\prime}\right) \in V \times V: u+u^{\prime} \in K, u-u^{\prime} \in L\right\}
$$

From this description it follows immediately that S is a closed operator.

In the setting of Construction 4, we would like to describe the polar decomposition of S. To this end, let P and Q denote the operators given by orthogonal projection onto K and L, respectively. The bounded operator $P-Q$ has a polar decomposition

$$
P-Q=J|P-Q|
$$

We will show that J coincides with the operator appearing in Theorem 1: that is, that $J^{-1} S$ is a positive self-adjoint unbounded operator.

We first note that since P and Q are projections, we have $0 \leq P+Q \leq 2$. In particular, $P+Q$ and $2-P-Q$ have unique positive square roots, which we will denote by $(P+Q)^{1 / 2}$ and $(2-P-Q)^{1 / 2}$. We first prove:

Lemma 5. In the above situation, we have $|P-Q|=(2-P-Q)^{1 / 2}(P+Q)^{1 / 2}$.
Proof. Since both sides are positive self-adjoint operators, it will suffice to prove that the identity holds after squaring both sides. That is, we wish to show

$$
(2-P-Q)(P+Q)=|P-Q|^{2}=(P-Q)^{2}
$$

This follows by expanding both sides, using the fact that P and Q are projections.
Since $P-Q$ is self-adjoint, we have

$$
J|P-Q|=P-Q=(P-Q)^{*}=(J|P-Q|)^{*}=|P-Q| J^{-1}=J^{-1}\left(J|P-Q| J^{-1}\right)
$$

From the uniqueness of the polar decomposition, we conclude that $J=J^{-1}$ and that J commutes with $|P-Q|$. It follows that J commutes with $J|P-Q|=P-Q$.

Proposition 6. The operators $P+Q,(2-P-Q)$, and $|P-Q|$ are injective. The operator $|P-Q|$ commutes with P and Q. Moreover, we have

$$
J P=(1-Q) J \quad J Q=(1-P) J
$$

Proof. If $v \in V$ satisfies $(P+Q) v=0$, then

$$
0=((P+Q) v, v)=(P v, v)+(Q v, v)=\|P v\|^{2}+\|Q v\|^{2}
$$

so that v is orthogonal to both K and L. Since $K+L$ is dense, we conclude that $v=0$. This proves that $P+Q$ is injective. To show that $2-P-Q$ is injective, we can apply the same argument to the pair of subspaces $K^{\perp}, L^{\perp} \subseteq V$. Since $|P-Q|=(P+Q)^{1 / 2}(2-P-Q)^{1 / 2}$, we conclude that $|P-Q|$ is injective.

To prove that $|P-Q|$ commutes with P and Q, it suffices to show that $|P-Q|^{2}=(P-Q)^{2}=$ $P+Q-P Q-Q P$ commutes with P and Q. An easy calculation gives

$$
P(P+Q-P Q-Q P)=P-P Q P=(P+Q-P Q-Q P) P
$$

so that $|P-Q|$ commutes with P; the proof for Q is similar.
We now prove that $J P=(1-Q) J$ (the proof that $J Q=(1-P) J$ is similar). We have

$$
|P-Q| J P=(P-Q) P=P-Q P=(1-Q)(P-Q)=(1-Q)|P-Q| J=|P-Q|(1-Q) J .
$$

Since $|P-Q|$ is injective we obtain $J P=(1-Q) J$.
Corollary 7. We have $J(K)=L^{\perp}$ and $J(L)=K^{\perp}$.
Corollary 8. The adjoint of the unbounded operator S is given by JSJ.

Proof. Note that $J S J$ is an unbounded operator with domain $K^{\perp}+L^{\perp}$, given by

$$
(J S J)(v+w)=-v+w
$$

for $v \in K^{\perp}$ and $w \in L^{\perp}$. If $v^{\prime} \in K$ and $w^{\prime} \in L$, we have

$$
\left(J S J(v+w), v^{\prime}+w^{\prime}\right)=\left(-v+w, v^{\prime}+w^{\prime}\right)=\left(w, v^{\prime}\right)-\left(v, w^{\prime}\right)=\left(v+w, v-w^{\prime}\right)=\left(v+w, S\left(v^{\prime}+w^{\prime}\right)\right)
$$

This proves that $J S J \subseteq S^{*}$. Conversely, suppose that u belongs to the domain of S^{*}. Then for $v^{\prime} \in K, w^{\prime} \in L$ we have

$$
\left(S^{*} u, v^{\prime}+w^{\prime}\right)=\left(u, v^{\prime}-w^{\prime}\right)
$$

Taking $w^{\prime}=0$, we deduce that $S^{*}(u)-u \in K^{\perp}$. Taking $v^{\prime}=0$, we deduce that $S^{*}(u)+u \in L^{\perp}$. It follows that $u \in K^{\perp}+L^{\perp}$, so that the domain of S^{*} is contained in $K^{\perp}+L^{\perp}$. This immediately implies that $S^{*}=J S J$.

Corollary 9. The operator $J S$ is self-adjoint.
This is not quite enough to prove that $S=J(J S)$ is the polar decomposition of S : we also need to know that $J S$ is a positive unbounded operator. We can deduce this from the following more precise result:
Proposition 10. The operator S is given by $J(2-P-Q)^{1 / 2}(P+Q)^{-1 / 2}$.
Proof. It follows from Lemma 2 that $T=(2-P-Q)^{1 / 2}(P+Q)^{-1 / 2}$ is a self-adjoint unbounded operator from V to itself. We will prove that $J T \subseteq S$. It then follows that $J S J=S^{*} \subseteq(J T)^{*}=T J$. Conjugating by J, we get $S \subseteq J T$, so that $J T=S$.

We have seen that $P+Q$ is a injective operator. It follows that $(P+Q)^{1 / 2}$ is also injective. Since this operator is self adjoint, it has dense image. It follows that the graph of the operator $(2-P-Q)^{1 / 2}(P+$ $Q)^{1 / 2}(P+Q)^{-1}$ is dense in the graph of T. That is, T is the closure of the operator $|P-Q|(P+Q)^{-1}$, so that $J T$ is the closure of $J|P-Q|(P+Q)^{-1}=(P-Q)(P+Q)^{-1}$. It will therefore suffice to show that $(P-Q)(P+Q)^{-1} \subseteq S$. This is clear: if u belongs to the domain of $(P+Q)^{-1}$, then we can write $u=(P+Q) v$ for some $v \in V$, so that

$$
S(u)=S(P v+Q v)=P v-Q v=(P-Q) v=(P-Q)(P+Q)^{-1}(u)
$$

