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November 13, 2011

In the last lecture, we asserted the following without proof:

Theorem 1. Let A be a von Neumann algebra, V a representation of A with a cyclic and separating vector
v, and let S = J∆

1
2 be the closure of the operator xv 7→ x∗v. Then:

(1) We have A′ = JAJ . That is, conjugation by J induces a conjugate-linear isomorphism of A with its
commutant A′.

(2) If z ∈ Z(A), then Jz = z∗J .

Our goal in this lecture is to begin the proof of Theorem 1. Our first step is to better understand the
operator ∆

1
2 . We have already seen that if T : V → V is a positive densely defined injective self-adjoint

operator, then T has the form GF−1, where F,G : V → V are positive bounded injective operators satisfying
F 2 + G2 = 1. Actually, in what follows, it will be convenient to have a slight variation on this statement
(obtained by multiplying F and G by

√
2):

Lemma 2. Let T : V → V be a positive, densely defined, injective, self-adjoint unbounded operator from
a Hilbert space V to itself. Then T can be written uniquely in the form GF−1, where F,G : V → V are
positive bounded injective operators satisfying F 2 +G2 = 1. Conversely, for every such pair (F,G), the map
GF−1 is a densely defined positive self-adjoint unbounded operator on V .

Our next goal is to try to locate the operators F and G in the situation of Theorem 1. In what follows,
we will think of V as a real Hilbert space. Let K0 ⊆ V denote the real subspace consisting of all vectors of
the form xv, where x ∈ A is self-adjoint, and let K ⊆ V denote the closure of K. Similarly, we let L0 ⊆ V
denote the real subspace consisting of all vectors of the form xv where x ∈ A is skew-adjoint, and L its
closure. Then K and L are real Hilbert spaces, and we have K = iL.

Proposition 3. In the above situation, the domain of the operator S is the space K +L. Moreover, we have
S(w + w′) = w − w′ for w ∈ K and w′ ∈ L.

Proof. If w ∈ K0, then w belongs to the domain of S and satisfies S(w) = w. Since S is closed, we see that
K ⊆ Dom(S) and S acts by the identity on K. Similarly, L ⊆ Dom(S) and S acts by −1 on L. This proves
that K + L ⊆ Dom(S). Conversely, suppose that y ∈ Dom(S). Then there exists a sequence of elements
xi ∈ A such that xiv → y and x∗i v → S(y). Then (xi + x∗i )v → y + S(y), so that y + S(y) ∈ K. Similarly,
y − S(y) ∈ L. It follows that y ∈ K + L.

Since S is well-defined, we see that K ∩ L = 0. Moreovrer, K + L = Dom(S) is dense in V . Let us now
abstract the essence of the above situation.

Construction 4. Let V be a real Hilbert space containing closed subspaces K and L such that K ∩ L = 0
and K + L is dense in V . We define an unbounded operator S : V → V with domain K + L by the formula
S(w + w′) = w − w′ for w,w′ ∈ V .

Equivalently, we define S so that the graph Γ of S is given by

{(u, u′) ∈ V × V : u + u′ ∈ K,u− u′ ∈ L}.

From this description it follows immediately that S is a closed operator.
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In the setting of Construction 4, we would like to describe the polar decomposition of S. To this end,
let P and Q denote the operators given by orthogonal projection onto K and L, respectively. The bounded
operator P −Q has a polar decomposition

P −Q = J |P −Q|.

We will show that J coincides with the operator appearing in Theorem 1: that is, that J−1S is a positive
self-adjoint unbounded operator.

We first note that since P and Q are projections, we have 0 ≤ P + Q ≤ 2. In particular, P + Q and
2− P −Q have unique positive square roots, which we will denote by (P + Q)1/2 and (2− P −Q)1/2. We
first prove:

Lemma 5. In the above situation, we have |P −Q| = (2− P −Q)1/2(P + Q)1/2.

Proof. Since both sides are positive self-adjoint operators, it will suffice to prove that the identity holds after
squaring both sides. That is, we wish to show

(2− P −Q)(P + Q) = |P −Q|2 = (P −Q)2.

This follows by expanding both sides, using the fact that P and Q are projections.

Since P −Q is self-adjoint, we have

J |P −Q| = P −Q = (P −Q)∗ = (J |P −Q|)∗ = |P −Q|J−1 = J−1(J |P −Q|J−1).

From the uniqueness of the polar decomposition, we conclude that J = J−1 and that J commutes with
|P −Q|. It follows that J commutes with J |P −Q| = P −Q.

Proposition 6. The operators P +Q, (2−P−Q), and |P−Q| are injective. The operator |P−Q| commutes
with P and Q. Moreover, we have

JP = (1−Q)J JQ = (1− P )J.

Proof. If v ∈ V satisfies (P + Q)v = 0, then

0 = ((P + Q)v, v) = (Pv, v) + (Qv, v) = ||Pv||2 + ||Qv||2

so that v is orthogonal to both K and L. Since K + L is dense, we conclude that v = 0. This proves that
P + Q is injective. To show that 2 − P − Q is injective, we can apply the same argument to the pair of
subspaces K⊥, L⊥ ⊆ V . Since |P −Q| = (P + Q)1/2(2− P −Q)1/2, we conclude that |P −Q| is injective.

To prove that |P − Q| commutes with P and Q, it suffices to show that |P − Q|2 = (P − Q)2 =
P + Q− PQ−QP commutes with P and Q. An easy calculation gives

P (P + Q− PQ−QP ) = P − PQP = (P + Q− PQ−QP )P,

so that |P −Q| commutes with P ; the proof for Q is similar.
We now prove that JP = (1−Q)J (the proof that JQ = (1− P )J is similar). We have

|P −Q|JP = (P −Q)P = P −QP = (1−Q)(P −Q) = (1−Q)|P −Q|J = |P −Q|(1−Q)J.

Since |P −Q| is injective we obtain JP = (1−Q)J .

Corollary 7. We have J(K) = L⊥ and J(L) = K⊥.

Corollary 8. The adjoint of the unbounded operator S is given by JSJ .
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Proof. Note that JSJ is an unbounded operator with domain K⊥ + L⊥, given by

(JSJ)(v + w) = −v + w

for v ∈ K⊥ and w ∈ L⊥. If v′ ∈ K and w′ ∈ L, we have

(JSJ(v + w), v′ + w′) = (−v + w, v′ + w′) = (w, v′)− (v, w′) = (v + w, v − w′) = (v + w, S(v′ + w′)).

This proves that JSJ ⊆ S∗. Conversely, suppose that u belongs to the domain of S∗. Then for v′ ∈ K,w′ ∈ L
we have

(S∗u, v′ + w′) = (u, v′ − w′).

Taking w′ = 0, we deduce that S∗(u)− u ∈ K⊥. Taking v′ = 0, we deduce that S∗(u) + u ∈ L⊥. It follows
that u ∈ K⊥ + L⊥, so that the domain of S∗ is contained in K⊥ + L⊥. This immediately implies that
S∗ = JSJ .

Corollary 9. The operator JS is self-adjoint.

This is not quite enough to prove that S = J(JS) is the polar decomposition of S: we also need to know
that JS is a positive unbounded operator. We can deduce this from the following more precise result:

Proposition 10. The operator S is given by J(2− P −Q)1/2(P + Q)−1/2.

Proof. It follows from Lemma 2 that T = (2− P −Q)1/2(P + Q)−1/2 is a self-adjoint unbounded operator
from V to itself. We will prove that JT ⊆ S. It then follows that JSJ = S∗ ⊆ (JT )∗ = TJ . Conjugating
by J , we get S ⊆ JT , so that JT = S.

We have seen that P + Q is a injective operator. It follows that (P + Q)1/2 is also injective. Since this
operator is self adjoint, it has dense image. It follows that the graph of the operator (2 − P − Q)1/2(P +
Q)1/2(P + Q)−1 is dense in the graph of T . That is, T is the closure of the operator |P − Q|(P + Q)−1,
so that JT is the closure of J |P − Q|(P + Q)−1 = (P − Q)(P + Q)−1. It will therefore suffice to show
that (P − Q)(P + Q)−1 ⊆ S. This is clear: if u belongs to the domain of (P + Q)−1, then we can write
u = (P + Q)v for some v ∈ V , so that

S(u) = S(Pv + Qv) = Pv −Qv = (P −Q)v = (P −Q)(P + Q)−1(u).
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