Math 261y: von Neumann Algebras (Lecture 30)

November 13, 2011

In the last lecture, we asserted the following without proof:

Theorem 1. Let A be a von Neumann algebra, V' a representation of A with a cyclic and separating vector
v, and let S = JAZ be the closure of the operator xv — x*v. Then:

(1) We have A’ = JAJ. That is, conjugation by J induces a conjugate-linear isomorphism of A with its
commutant A’.

(2) If z € Z(A), then Jz = z*J.

Our goal in this lecture is to begin the proof of Theorem 1. Our first step is to better understand the
operator Az. We have already seen that if T': V' — V is a positive densely defined injective self-adjoint
operator, then T has the form GF~!, where F,G : V — V are positive bounded injective operators satisfying
F2?2 4 G? = 1. Actually, in what follows, it will be convenient to have a slight variation on this statement
(obtained by multiplying F' and G by v/2):

Lemma 2. Let T : V — V be a positive, densely defined, injective, self-adjoint unbounded operator from
a Hilbert space V to itself. Then T can be written uniquely in the form GF~', where F,G : V — V are
positive bounded injective operators satisfying F? + G? = 1. Conversely, for every such pair (F,G), the map
GF~' is a densely defined positive self-adjoint unbounded operator on V.

Our next goal is to try to locate the operators F' and G in the situation of Theorem 1. In what follows,
we will think of V' as a real Hilbert space. Let Ky C V denote the real subspace consisting of all vectors of
the form xv, where x € A is self-adjoint, and let K C V denote the closure of K. Similarly, we let Ly C V
denote the real subspace consisting of all vectors of the form xv where x € A is skew-adjoint, and L its
closure. Then K and L are real Hilbert spaces, and we have K =iL.

Proposition 3. In the above situation, the domain of the operator S is the space K+ L. Moreover, we have
S(w+w)=w-—w forweK andw' € L.

Proof. If w € Ky, then w belongs to the domain of S and satisfies S(w) = w. Since S is closed, we see that
K C Dom(S) and S acts by the identity on K. Similarly, L C Dom(S) and S acts by —1 on L. This proves
that K + L C Dom(S). Conversely, suppose that y € Dom(S). Then there exists a sequence of elements
x; € A such that ;v — y and 2fv — S(y). Then (x; + z})v — y + S(y), so that y + S(y) € K. Similarly,
y— S(y) € L. Tt follows that y € K + L. O

Since S is well-defined, we see that K N L = 0. Moreovrer, K + L = Dom(S5) is dense in V. Let us now
abstract the essence of the above situation.

Construction 4. Let V be a real Hilbert space containing closed subspaces K and L such that KN L =0
and K + L is dense in V. We define an unbounded operator S : V — V with domain K + L by the formula
S(w+w')=w-—w forw,w € V.

Equivalently, we define S so that the graph I" of S is given by

{(u,u/) eV xV:iu+u € K,u—u € L}.

From this description it follows immediately that S is a closed operator.



In the setting of Construction 4, we would like to describe the polar decomposition of S. To this end,
let P and @ denote the operators given by orthogonal projection onto K and L, respectively. The bounded
operator P — @ has a polar decomposition

P—-Q=JP-Qq|.

We will show that J coincides with the operator appearing in Theorem 1: that is, that J~1S is a positive
self-adjoint unbounded operator.

We first note that since P and @ are projections, we have 0 < P 4+ @ < 2. In particular, P + @ and
2 — P — @ have unique positive square roots, which we will denote by (P + Q)2 and (2 — P — Q)'/2. We
first prove:

Lemma 5. In the above situation, we have |P — Q| = (2 — P — Q)Y/?(P + Q)'/2.

Proof. Since both sides are positive self-adjoint operators, it will suffice to prove that the identity holds after
squaring both sides. That is, we wish to show

2-P-Q)P+Q)=IP-QP=(P-Q)>
This follows by expanding both sides, using the fact that P and @ are projections. O
Since P — @ is self-adjoint, we have
JIP-Q=P-Q=(P-Q)=(JP-Q)" =[P-Q|J ' =J1(J|P-QJ).

From the uniqueness of the polar decomposition, we conclude that J = J~! and that J commutes with
|P — @Q|. It follows that J commutes with J|P — Q| =P — Q.

Proposition 6. The operators P+Q, (2— P —Q), and |P—Q)| are injective. The operator |P— Q| commutes
with P and Q. Moreover, we have

JP=(1-Q)J JQ=(1-P)J
Proof. If v € V satisfies (P + Q)v = 0, then
0= ((P+Q)v,v) = (Pv,v) + (Qu,v) = [|[Pv]]* +[|Qu]|*

so that v is orthogonal to both K and L. Since K + L is dense, we conclude that v = 0. This proves that
P + @ is injective. To show that 2 — P — @) is injective, we can apply the same argument to the pair of
subspaces K+, L+ C V. Since |P — Q| = (P +Q)'/?(2 — P — Q)'/?, we conclude that |P — Q| is injective.

To prove that |P — Q| commutes with P and Q, it suffices to show that |[P — Q> = (P — Q)? =
P+ @Q — PQ — QP commutes with P and ). An easy calculation gives

P(P+Q—PQ—-QP)=P—PQP=(P+Q—PQ—QP)P,

so that |P — Q| commutes with P; the proof for @ is similar.
We now prove that JP = (1 — Q)J (the proof that JQ = (1 — P)J is similar). We have

P-Q/JP=(FP-QP=P-QP=(1-Q)(P-Q)=(1-Q)P-QJ=|P-Q|(1-Q)J
Since |P — Q)| is injective we obtain JP = (1 — Q)J. O
Corollary 7. We have J(K) = L+ and J(L) = K+.

Corollary 8. The adjoint of the unbounded operator S is given by JSJ.



Proof. Note that JS.J is an unbounded operator with domain K+ + L+, given by
(JSTH(v+w)=—-v+w
forve K+ and w e L*. If v € K and w’ € L, we have
(JST(v+w), v +w') = (—v+w, v +w') = (w,v) — (v,w) = (v+w,v—w) = (v+w, S +w)).

This proves that JSJ C S*. Conversely, suppose that u belongs to the domain of S*. Then for v’ € K,w' € L
we have
(S*u, v +w') = (u,v" —w').

Taking w’ = 0, we deduce that S*(u) —u € K+. Taking v' = 0, we deduce that S*(u) + u € L*. It follows
that u € K+ + L*, so that the domain of S* is contained in K+ + L*. This immediately implies that
S*=JSJ. O

Corollary 9. The operator JS is self-adjoint.

This is not quite enough to prove that S = J(JS) is the polar decomposition of S: we also need to know
that J.S is a positive unbounded operator. We can deduce this from the following more precise result:

Proposition 10. The operator S is given by J(2 — P — Q)Y/?(P 4+ Q)~1/2.

Proof. Tt follows from Lemma 2 that T = (2 — P — Q)Y/?(P + Q)~'/? is a self-adjoint unbounded operator
from V to itself. We will prove that JT C S. It then follows that JSJ = S* C (JT)* = TJ. Conjugating
by J, we get S C JT, so that JT = S.

We have seen that P + Q is a injective operator. It follows that (P + @Q)'/2 is also injective. Since this
operator is self adjoint, it has dense image. It follows that the graph of the operator (2 — P — Q)'/?(P +
Q)'/?(P + Q)~! is dense in the graph of T. That is, T is the closure of the operator |P — Q|(P + Q)~!,
so that JT is the closure of J|P — Q|(P + Q)™! = (P — Q)(P + Q)~!. It will therefore suffice to show
that (P — Q)(P + Q)~! C S. This is clear: if u belongs to the domain of (P + Q)~!, then we can write
u= (P + Q)v for some v € V, so that

S(u) = S(Pv+Qu)=Pv—Qu=(P-Qu=(P-Q)(P+Q)"(u).



