
Math 261y: von Neumann Algebras (Lecture 3)

September 7, 2011

In this lecture, we continue our study of C∗-algebras. Recall that C∗-algebra is a Banach algebra equipped
with an anti-involution x 7→ x∗ satisfying

||x||2 = ||x∗x||.

Notation 1. Let A be a ∗-algebra. We say that an element x ∈ A is Hermitian or self-adjoint if x = x∗. We
say that x is skew-Hermitian or skew-adjoint if x∗ = −x. Every element x ∈ A admits a unique decomposition
x = <(x) + i=(x), where <(x) = x+x∗

2 is self-adjoint and i=(x) = x−x∗

2 is skew-adjoint.
We say that an element x ∈ A is normal if x and x∗ commute: equivalently, x is normal if <(x) and =(x)

commute.

Proposition 2. Let A be a C∗-algebra and let x ∈ A be a normal element. Then ||xn|| = ||x||n for every
positive integer n.

Proof. It will suffice to show that ||xn||2 = ||x||2n. Applying the C∗-identity, we can rewrite this as
||(xn)∗xn|| = ||x∗x||n. Since x is normal, the left hand side can be rewritten ||(x∗x)n||. We may there-
fore replace x by x∗x and thereby reduce to the case where x is Hermitian. In this case, the C∗-identity
gives ||x2|| = ||x||2. Iterating this argument, we obtain

||x2
k

|| = ||x||2
k

.

Choose an integer m such that m+ n is a power of 2. We then have

||xm+n|| = ||xmxn|| ≤ ||xm|| ||xn|| ≤ ||x||m ||x||n = ||x||m+n.

Since equality holds, we must have equality throughout. Assuming x 6= 0, this gives

||xm|| = ||x||m ||xn|| = ||x||n.

Corollary 3. Let A be a C∗ algebra and let x ∈ A be a normal element. Then the spectral radius ρ(x)
coincides with the norm ||x||.

Proof. Combine the spectral radius formula (Theorem ??) with Proposition 2.

For any commutative Banach algebra A, each element x ∈ A determines a continuous map SpecA→ C,
given by χ 7→ χ(x). This map is an algebra homomorphism, called the Gelfand transform.

Proposition 4. Let A be a commutative C∗-algebra. Then the Gelfand transform u : A → C0(SpecA) is
an isomorphism of C∗-algebras.
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Proof. We first show that u is a map of ∗-algebras. Equivalently, we claim that every character χ : A→ C
satisfies χ(x∗) = χ(x). It will suffice to show that χ carries Hermitian elements x ∈ A to real numbers.
Define f : R→ A by the formula

f(t) = eitx =
∑
n

(itx)n

n!
.

Then f satisfies f(t)−1 = f(−t) = f(t)∗, so that the C∗-identity gives

||f(t)||2 = ||f(t)∗f(t)|| = 1.

Since χ is continuous and has norm ≤ 1, we obtain

1 ≥ |χf(t)| = eitχ(x).

Since this is true for both positive and negative values of t, we must have χ(x) ∈ R.
We now note that the Gelfand transform u is isometric: for x ∈ A we have

||u(x)|| = sup{χ ∈ SpecA : |χ(x)|} = ρ(x) = ||x||

by Corollary 3. It follows that u is an isomorphism from A onto a closed ∗-subalgebra of C0(SpecA). This
subalgebra separates points: if χ, χ′ ∈ SpecA are distinct, then we can choose x ∈ A such that χ(x) 6= χ′(x).
Applying the Stone-Weierstrass theorem, we deduce that the image of u is the whole of C0(SpecA), so that
u is an isomorphism.

Corollary 5. Every commutative C∗-algebra is isomorphic to C0(X) for some compact Hausdorff space X.
Moreover, we can canonically recover X as the spectrum SpecA.

Corollary 8 suggests the possibility that many familiar properties of continuous functions can be gener-
alized to the setting of elements of an arbitrary C∗-algebra. The following provides an example:

Definition 6. Let A be a C∗-algebra and let x ∈ A. We say that x is positive if x is Hermitian and
σ(x) ⊆ R≥0.

Example 7. Let A = C0(X) be a commutative C∗-algebra. Then a function f ∈ C0(X) is a positive
element of A if and only if the image of f is contained in R≥0: that is, f is a nonnegative function.

We might try to verify properties of positive elements by restricting to the commutative case: note that
if x ∈ A is Hermitian (or, more generally, normal) then the smallest C∗-subalgebra of A containing x is
commutative, hence of the form C∗(X) for some compact space X. We will need to know that restriction
to this subalgebra does not change the notion of positivity. In fact, we have the following more general
observation:

Proposition 8. Let A be a C∗-algebra containing a sub-C∗-algebra A0. For each Hermitian element x ∈ A0,
the spectrum of x does not depend on whether we regard x as an element of A0 or an element of A.

Remark 9. The assumption that x is Hermitian is not necessary, but it will be necessary for our proof.

Proof. Replacing x by x− λ if necessary, we are reduced to proving the following:

(∗) The element x is invertible in A if and only if it is invertible in A0.

In other words, we must show that if x admits an inverse x−1 ∈ A, then that element belongs to A0. Replace
A by the C∗-subalgebra generated by x and x−1, and A0 by the C∗-subalgebra generated by x, so that A and
A0 are commutative. The inclusion i : A0 ↪→ A induces a map f : SpecA→ SpecA0. Since i is injective, the
map f is surjective (otherwise, i annihilates a function supported on the open set SpecA0 − f(SpecA)). It
follows that a continuous function on SpecA0 is invertible if and only if its restriction to SpecA is invertible.
Applying Proposition 4, we deduce that x is invertible in A0 ' C0(SpecA0).
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Corollary 10. Let A be a C∗-algebra and let x ∈ A be Hermitian. Then σ(x) ⊆ R.

Proof. Using Proposition 8, we can reduce to the case where A ' C0(X), in which case the result is
obvious.

Corollary 11. Let A be a C∗-algebra and let x ∈ A be a Hermitian element. The following conditions are
equivalent:

(1) The element x ∈ A is positive.

(2) There exists a positive element y ∈ A such that x = y2.

If these conditions are satisfied, then the element y is unique.

Proof. Suppose (2) is satisfied. Replacing A by the C∗-subalgebra generated by y, we can assume that A is
commutative, hence of the form C0(X) for some compact space X. It follows immediately that x is positive.

Conversely, suppose that (1) is satisfied. Let B ⊆ A be the C∗-subalgebra generated by x. Then
B ' C0(Y ) for some compact space Y and x corresponds to a nonnegative function on Y . It follows that
we can write x = y2 for a unique positive element y ∈ B. Suppose y′ ∈ A is any other positive element
satisfying y′2 = x; we wish to prove y = y′. Replacing A by the C∗-subalgebra generated by y′ (which
contains x = y′2, hence B, and therefore also y), we can assume that A is commutative, so that A ' C0(X).
In this case, the uniqueness is obvious.

We will say that an element x ∈ A is negative if −x is positive. Note that if x is both positive and
negative, then σ(x) ⊆ R≥0 ∩R≤0 = {0}, so that ||x|| = ρ(x) = 0 and therefore x = 0.

Proposition 12. Let A be a C∗-algebra and let x ∈ A be Hermitian. Then x can be written uniquely in the
form x+ + x−, where x+ is positive, x− is negative, and x+x− = x−x+ = 0.

Proof. Assume first that A is commutative, so that A ' C0(Y ) for some compact space Y . Then x can be
identified with a continuous function f : Y → R, and we take x+ and x− to correspond to the functions

f+(y) =

{
f(y) if f(y) ≥ 0

0 otherwise.

f−(y) =

{
f(y) if f(y) ≤ 0

0 otherwise.

It is easy to see that x+ and x− are the unique elements of A having the desired properties.
We now treat the general case. Let B be the C∗-subalgebra of A generated by x. Then B is commutative,

so we can find a unique pair of elements x−, x+ ∈ B satisfying our requirements. This proves existence.
For the uniqueness, suppose we are given another decomposition x = x′+ + x′−, where x′+ is positive, x′−
is negative, and x′+x

′
− = x′−x

′
+ = 0. We wish to prove that x′+ = x+ and x′− = x−. Replacing A by the

C∗-subalgebra generated by x′+ and x′− (which contains x, hence also B, hence x+ and x− ) we can reduce
to the commutative case handled above.

Here is a useful criterion for positiveness:

Lemma 13. Let A be a C∗-algebra and let x ∈ A be Hermitian. The following conditions are equivalent:

(1) The element x is positive.

(2) For every real number C ≥ ||x||, we have ||C − x|| ≤ C.

(3) There exists a real number C ≥ ||x|| such that ||C − x|| ≤ C.
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Proof. Replacing A by the C∗-subalgebra generated by x, we can assume that A is commutative, hence
A ' C0(X) for some compact space X. In this case, the result is easy.

Remark 14. It follows from Lemma 13 that the collection of positive elements of A form a closed subset of
A.

Proposition 15. Let A be a C∗-algebra and let x, y ∈ A be positive elements. Then x+ y is positive.

Proof. It is clear that x+ y is Hermitian. Choose C1 ≥ ||x|| and C2 ≥ ||y||, so that C = C1 + C2 ≥ ||x+ y.
Then

||C − x− y|| = ||(C1 − x) + (C2 − y)|| ≤ ||C1 − x||+ ||C2 − y|| ≤ C1 + C2 = C,

so that x+ y is positive by Lemma 13.
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