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Let A be a ∗-algebra (in the purely algebraic sense). Then we there exists a canonical A-A bimodule M ,
given by A itself. For x ∈ A, let lx, rx : M →M denote the operations given by left and right multiplication
by x. The ∗-operator on A determines a C-antilinear map J : M → M . Moreover, this map exchanges left
and right multiplication in the following sense: for x ∈ A and y ∈M , we have

J(lxy) = J(xy) = (xy)∗ = y∗x∗ = rx∗(y∗) = rx∗Jy.

That is, we have rx∗ = JlxJ .
This purely algebraic construction has the following features:

(1) All left A-module maps from M to itself are given by the right action of A on M , and all right A-module
maps from M to itself and given by the left action of A on M .

(2) If z belongs to the center of A, then lz and rz coincide.

Our goal in the next few lectures is to develop Tomita-Takesaki theory, which reconstructs an analogous
picture in the setting of von Neumann algebras. If A is a von Neumann algebra, we are generally interested
in bimodules which are themselves Hilbert spaces. Usually, we cannot view A as a bimodule over itself in this
sense. However, we can construct something which is very analogous. Suppose that V is a representation
of A containing a cyclic and separating vector v. In the last lecture, we studied the unbounded operator
S0 : V → V with domain Av, given by S0(xv) = x∗v. We saw that this operator is closable, and that its
closure S is injective, densely defined, and has dense image. It follows that S admits a spectral decomposition
S = J∆

1
2 , where J is antiunitary and ∆

1
2 is a self-adjoint unbounded C-linear operator.

Definition 1. Let F : V → W be an unbounded operator between Hilbert spaces. Assume that F is
injective on the domain V0 of F . Then we can define a new unbounded operator F−1 : W → V with domain
F (V0), given by F−1(Fv) = v. Note that the graphs of F and F−1 are identical (as subsets of V ⊕W , so
that F−1 is closed if and only if F is closed. If not, then the closures of F and F−1 agree (provided both

are defined). That is, if F is closable and its closure F is injective, then F−1 is closable and F
−1

= F−1.

In our situation, we have S−10 = S0 (since the operation x 7→ x∗ is its own inverse). It follows that

S−1 = S. Let ∆−
1
2 denote the inverse of ∆

1
2 . Then we get

J∆
1
2 = S = S−1 = ∆−

1
2 J−1 = J−1(J∆−

1
2 J−1)

From the uniqueness of the polar decomposition we deduce the following:

Proposition 2. The operator J is an antiunitary involution (that is, J2 = id), and J∆−
1
2 = ∆

1
2 J .

Next week, we will prove the following result:

Theorem 3. Let A be a von Neumann algebra, V a representation of A with a cyclic and separating vector
v, and let S = J∆

1
2 be as before. Then:
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(1) We have A′ = JAJ . That is, conjugation by J induces a conjugate-linear isomorphism of A with its
commutant A′.

(2) If z ∈ Z(A), then Jz = z∗J .

Remark 4. In the situation of Theorem 3, we can define a right action of A on V by means of a map
ρ : Aop → B(V ) given by

ρ(x)(v) = Jx∗Jv.

Assertion (1) says that ρ induces an isomorphism from Aop to the commutant A′ of A, and assertion (2)
says that this isomorphism is given by z 7→ z∗ for z ∈ Z(A) = A∩A′. In particular, the right action of A on
V commutes with the left action of A on V , so that we can regard V as an A-A bimodule.

We would like to say that Theorem 3 furnishes us with a canonical A-A bimodule, analogous to the purely
algebraic situation discussed above. However, the construction depends on a choice of pair (V, v), where V
is a representation of A and v ∈ V is a cyclic and separating vector. Note that to give a pair (V, v) where v
is cyclic is equivalent to giving the (ultraweakly continuous) state φ : A→ C, given by φ(x) = (xv, v). Note
that v is separating if and only if (xv, xv) > 0 for all nonzero x ∈ A. We can rewrite this as φ(x∗x) > 0
for x 6= 0. That is, v is separating if and only if the state φ is faithful, in the sense that it does not vanish
on nonzero positive elements of A. We can therefore think of Theorem 3 as constructing an A-A bimodule
given a choice of faithful ultraweakly continuous state φ : A→ C.

Suppose we are given two different faithful (ultraweakly continuous) states φ, ψ : A→ C, from which we
can construct a pair of representations Vφ and Vψ with cyclic vectors vφ and vψ. We would like to compare
these representations. To this end, consider the von Neumann algebra B : M2(A) of 2-by-2 matrices with
coefficients in A. We define a linear functional φ⊕ ψ : B → C by the formula

(φ⊕ ψ)(
a b
c d

) = φ(a) + ψ(d).

The associated inner product on B is given by

(
a b
c d

), (
a′ b′

c′ d′
) 7→ φ(a′∗a) + φ(c′∗c) + ψ(b′∗b) + ψ(d′∗d).

Let W denote the Hilbert space completion of B with respect to this inner product. We can think of the
elements of W as the space of matrices

(
v w
v′ w′

)

with v, v′ ∈ Vφ and w,w′ ∈ Vψ. From this description, we immediately see that φ⊕ ψ is a faithful state on

B. We can think of the commutant B′ as consisting of matrices (
F G
F ′ G′

) where F ∈ A′φ belongs to the

commutant of A in Vφ, G′ ∈ A′ψ, F ′ ∈ HomA(Vψ, Vφ), and G ∈ HomA(Vφ, Vψ). Let us apply Theorem 3 to
the pairs (A, Vφ), (A, Vψ), and (B,W ). We obtain antiunitary involutions

Jφ : Vφ → Vφ Jψ : Vψ → Vψ J : W →W.

Unwinding the definitions, we see that J is given by the formula

J(
v w
v′ w′

) = (
Jφv U(v′)
U ′(w) Jψv

)

2



for some antiunitary isomorphisms U : Vφ → Vψ and U ′ : Vψ → Vφ. Since J2 = 1, we have U ′ = U−1. We
now compute

J(
0 0
1 0

)J(
v w
v′ w′

) = J(
0 0
1 0

)(
Jφv Uv′

U−1w Jψw
′ )

= J(
0 0
Jφv Uv′

)

= (
0 UJφv
0 JψUv

′ ).

Since the operator J(
0 0
1 0

)J belongs to B′, it is given by some matrix (
F G
F ′ G′

) above. It follows

immediately that G = UJφ = JψU . From this, we deduce that UJφ is an A-linear unitary isomorphism α
from Vφ to Vψ satisfying Jψ ◦ α = α ◦ Jφ. We have proven:

Proposition 5. Let A be a von Neumann algebra, let φ and ψ be faithful ultraweakly continuous states on
A, let Vφ and Vψ be the associated representations, with antiunitary operators Jφ and Jψ given in Theorem
3. Then there exists an A-linear unitary isomorphism α : Vφ → Vψ such that α ◦ Jφ = Jψ ◦ α. In particular,
α is an isomorphism of A-A bimodules.

Remark 6. The isomorphism α is canonical. In fact, it is almost unique. Suppose we are given a pair of
isomorphisms α, β : Vφ → Vψ satisfying the requirements of Proposition 5. Let γ = β−1 ◦ α. Then γ is
a unitary isomorphism of Vφ with itself which commutes with the action of A and with Jφ. It therefore
commutes with the action of the commutant A′φ = JφAJφ. It follows that γ ∈ A ∩ A′φ = Z(A). Theorem 3

then gives Jφ ◦ γ = γ∗ ◦ Jφ, so that γ = γ∗. Since γ is unitary, we deduce that γ2 = 1. If A is a factor, this
means that γ = ±1: that is, the isomorphisms α and β differ by at most a sign.

Definition 7. Let A be a von Neumann algebra which admits an ultraweakly continuous faithful state
φ (for example, any separable von Neumann algebra). We let L2(A) denote the Hilbert space Vφ, and
J : L2(A) → L2(A) the antiunitary isomorphism appearing in Theorem 3. It follows from the above
considerations that the pair (L2(A), J) is independent of the choice of φ up to isomorphism.

Remark 8. Since the isomorphism α appearing in Proposition 5 is not quite unique, one might worry that
L2(A) is not quite well-defined. However, although α is not unique it is nevertheless canonical. That is,
given a triple of ultraweakly continuous faithful states φ0, φ1, φ2 : A→ C, the diagram of Hilbert spaces and
unitary isomorphisms

Vφ1

α12

!!
Vφ0

α01

==

α02 // Vφ2

is actually commutative. One can prove this by applying Theorem 3 to the state φ0 ⊕ φ1 ⊕ φ2 on M3(A).
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