Math 261y: von Neumann Algebras (Lecture 29)

November 13, 2011

Let A be a $*$-algebra (in the purely algebraic sense). Then we there exists a canonical A - A bimodule M, given by A itself. For $x \in A$, let $l_{x}, r_{x}: M \rightarrow M$ denote the operations given by left and right multiplication by x. The $*$-operator on A determines a C-antilinear map $J: M \rightarrow M$. Moreover, this map exchanges left and right multiplication in the following sense: for $x \in A$ and $y \in M$, we have

$$
J\left(l_{x} y\right)=J(x y)=(x y)^{*}=y^{*} x^{*}=r_{x^{*}}\left(y^{*}\right)=r_{x^{*}} J y
$$

That is, we have $r_{x^{*}}=J l_{x} J$.
This purely algebraic construction has the following features:
(1) All left A-module maps from M to itself are given by the right action of A on M, and all right A-module maps from M to itself and given by the left action of A on M.
(2) If z belongs to the center of A, then l_{z} and r_{z} coincide.

Our goal in the next few lectures is to develop Tomita-Takesaki theory, which reconstructs an analogous picture in the setting of von Neumann algebras. If A is a von Neumann algebra, we are generally interested in bimodules which are themselves Hilbert spaces. Usually, we cannot view A as a bimodule over itself in this sense. However, we can construct something which is very analogous. Suppose that V is a representation of A containing a cyclic and separating vector v. In the last lecture, we studied the unbounded operator $S_{0}: V \rightarrow V$ with domain $A v$, given by $S_{0}(x v)=x^{*} v$. We saw that this operator is closable, and that its closure S is injective, densely defined, and has dense image. It follows that S admits a spectral decomposition $S=J \Delta^{\frac{1}{2}}$, where J is antiunitary and $\Delta^{\frac{1}{2}}$ is a self-adjoint unbounded C-linear operator.

Definition 1. Let $F: V \rightarrow W$ be an unbounded operator between Hilbert spaces. Assume that F is injective on the domain V_{0} of F. Then we can define a new unbounded operator $F^{-1}: W \rightarrow V$ with domain $F\left(V_{0}\right)$, given by $F^{-1}(F v)=v$. Note that the graphs of F and F^{-1} are identical (as subsets of $V \oplus W$, so that F^{-1} is closed if and only if F is closed. If not, then the closures of F and F^{-1} agree (provided both are defined). That is, if F is closable and its closure \bar{F} is injective, then F^{-1} is closable and $\bar{F}^{-1}=\overline{F^{-1}}$.

In our situation, we have $S_{0}^{-1}=S_{0}$ (since the operation $x \mapsto x^{*}$ is its own inverse). It follows that $S^{-1}=S$. Let $\Delta^{-\frac{1}{2}}$ denote the inverse of $\Delta^{\frac{1}{2}}$. Then we get

$$
J \Delta^{\frac{1}{2}}=S=S^{-1}=\Delta^{-\frac{1}{2}} J^{-1}=J^{-1}\left(J \Delta^{-\frac{1}{2}} J^{-1}\right)
$$

From the uniqueness of the polar decomposition we deduce the following:
Proposition 2. The operator J is an antiunitary involution (that is, $J^{2}=\mathrm{id}$), and $J \Delta^{-\frac{1}{2}}=\Delta^{\frac{1}{2}} J$.
Next week, we will prove the following result:
Theorem 3. Let A be a von Neumann algebra, V a representation of A with a cyclic and separating vector v, and let $S=J \Delta^{\frac{1}{2}}$ be as before. Then:
(1) We have $A^{\prime}=J A J$. That is, conjugation by J induces a conjugate-linear isomorphism of A with its commutant A^{\prime}.
(2) If $z \in Z(A)$, then $J z=z^{*} J$.

Remark 4. In the situation of Theorem 3, we can define a right action of A on V by means of a map $\rho: A^{o p} \rightarrow B(V)$ given by

$$
\rho(x)(v)=J x^{*} J v
$$

Assertion (1) says that ρ induces an isomorphism from $A^{o p}$ to the commutant A^{\prime} of A, and assertion (2) says that this isomorphism is given by $z \mapsto z^{*}$ for $z \in Z(A)=A \cap A^{\prime}$. In particular, the right action of A on V commutes with the left action of A on V, so that we can regard V as an A - A bimodule.

We would like to say that Theorem 3 furnishes us with a canonical A - A bimodule, analogous to the purely algebraic situation discussed above. However, the construction depends on a choice of pair (V, v), where V is a representation of A and $v \in V$ is a cyclic and separating vector. Note that to give a pair (V, v) where v is cyclic is equivalent to giving the (ultraweakly continuous) state $\phi: A \rightarrow \mathbf{C}$, given by $\phi(x)=(x v, v)$. Note that v is separating if and only if $(x v, x v)>0$ for all nonzero $x \in A$. We can rewrite this as $\phi\left(x^{*} x\right)>0$ for $x \neq 0$. That is, v is separating if and only if the state ϕ is faithful, in the sense that it does not vanish on nonzero positive elements of A. We can therefore think of Theorem 3 as constructing an $A-A$ bimodule given a choice of faithful ultraweakly continuous state $\phi: A \rightarrow \mathbf{C}$.

Suppose we are given two different faithful (ultraweakly continuous) states $\phi, \psi: A \rightarrow \mathbf{C}$, from which we can construct a pair of representations V_{ϕ} and V_{ψ} with cyclic vectors v_{ϕ} and v_{ψ}. We would like to compare these representations. To this end, consider the von Neumann algebra $B: M_{2}(A)$ of 2-by- 2 matrices with coefficients in A. We define a linear functional $\phi \oplus \psi: B \rightarrow \mathbf{C}$ by the formula

$$
(\phi \oplus \psi)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\phi(a)+\psi(d) .
$$

The associated inner product on B is given by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right),\left(\begin{array}{cc}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right) \mapsto \phi\left(a^{\prime *} a\right)+\phi\left(c^{*} c\right)+\psi\left(b^{\prime *} b\right)+\psi\left(d^{*} d\right)
$$

Let W denote the Hilbert space completion of B with respect to this inner product. We can think of the elements of W as the space of matrices

$$
\left(\begin{array}{cc}
v & w \\
v^{\prime} & w^{\prime}
\end{array}\right)
$$

with $v, v^{\prime} \in V_{\phi}$ and $w, w^{\prime} \in V_{\psi}$. From this description, we immediately see that $\phi \oplus \psi$ is a faithful state on B. We can think of the commutant B^{\prime} as consisting of matrices ($\left.\begin{array}{cc}F & G \\ F^{\prime} & G^{\prime}\end{array}\right)$ where $F \in A_{\phi}^{\prime}$ belongs to the commutant of A in $V_{\phi}, G^{\prime} \in A_{\psi}^{\prime}, F^{\prime} \in \operatorname{Hom}_{A}\left(V_{\psi}, V_{\phi}\right)$, and $G \in \operatorname{Hom}_{A}\left(V_{\phi}, V_{\psi}\right)$. Let us apply Theorem 3 to the pairs $\left(A, V_{\phi}\right),\left(A, V_{\psi}\right)$, and (B, W). We obtain antiunitary involutions

$$
J_{\phi}: V_{\phi} \rightarrow V_{\phi} \quad J_{\psi}: V_{\psi} \rightarrow V_{\psi} \quad J: W \rightarrow W
$$

Unwinding the definitions, we see that J is given by the formula

$$
J\left(\begin{array}{cc}
v & w \\
v^{\prime} & w^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
J_{\phi} v & U\left(v^{\prime}\right) \\
U^{\prime}(w) & J_{\psi} v
\end{array}\right)
$$

for some antiunitary isomorphisms $U: V_{\phi} \rightarrow V_{\psi}$ and $U^{\prime}: V_{\psi} \rightarrow V_{\phi}$. Since $J^{2}=1$, we have $U^{\prime}=U^{-1}$. We now compute

$$
\begin{aligned}
J\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) J\left(\begin{array}{cc}
v & w \\
v^{\prime} & w^{\prime}
\end{array}\right) & =J\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
J_{\phi} v & U v^{\prime} \\
U^{-1} w & J_{\psi} w^{\prime}
\end{array}\right) \\
& =J\left(\begin{array}{cc}
0 & 0 \\
J_{\phi} v & U v^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & U J_{\phi} v \\
0 & J_{\psi} U v^{\prime}
\end{array}\right)
\end{aligned}
$$

Since the operator $J\left(\begin{array}{cc}0 & 0 \\ 1 & 0\end{array}\right) J$ belongs to B^{\prime}, it is given by some matrix $\left(\begin{array}{cc}F & G \\ F^{\prime} & G^{\prime}\end{array}\right)$ above. It follows immediately that $G=U J_{\phi}=J_{\psi} U$. From this, we deduce that $U J_{\phi}$ is an A-linear unitary isomorphism α from V_{ϕ} to V_{ψ} satisfying $J_{\psi} \circ \alpha=\alpha \circ J_{\phi}$. We have proven:

Proposition 5. Let A be a von Neumann algebra, let ϕ and ψ be faithful ultraweakly continuous states on A, let V_{ϕ} and V_{ψ} be the associated representations, with antiunitary operators J_{ϕ} and J_{ψ} given in Theorem 3. Then there exists an A-linear unitary isomorphism $\alpha: V_{\phi} \rightarrow V_{\psi}$ such that $\alpha \circ J_{\phi}=J_{\psi} \circ \alpha$. In particular, α is an isomorphism of $A-A$ bimodules.

Remark 6. The isomorphism α is canonical. In fact, it is almost unique. Suppose we are given a pair of isomorphisms $\alpha, \beta: V_{\phi} \rightarrow V_{\psi}$ satisfying the requirements of Proposition 5. Let $\gamma=\beta^{-1} \circ \alpha$. Then γ is a unitary isomorphism of V_{ϕ} with itself which commutes with the action of A and with J_{ϕ}. It therefore commutes with the action of the commutant $A_{\phi}^{\prime}=J_{\phi} A J_{\phi}$. It follows that $\gamma \in A \cap A_{\phi}^{\prime}=Z(A)$. Theorem 3 then gives $J_{\phi} \circ \gamma=\gamma^{*} \circ J_{\phi}$, so that $\gamma=\gamma^{*}$. Since γ is unitary, we deduce that $\gamma^{2}=1$. If A is a factor, this means that $\gamma= \pm 1$: that is, the isomorphisms α and β differ by at most a sign.

Definition 7. Let A be a von Neumann algebra which admits an ultraweakly continuous faithful state ϕ (for example, any separable von Neumann algebra). We let $L^{2}(A)$ denote the Hilbert space V_{ϕ}, and $J: L^{2}(A) \rightarrow L^{2}(A)$ the antiunitary isomorphism appearing in Theorem 3. It follows from the above considerations that the pair $\left(L^{2}(A), J\right)$ is independent of the choice of ϕ up to isomorphism.

Remark 8. Since the isomorphism α appearing in Proposition 5 is not quite unique, one might worry that $L^{2}(A)$ is not quite well-defined. However, although α is not unique it is nevertheless canonical. That is, given a triple of ultraweakly continuous faithful states $\phi_{0}, \phi_{1}, \phi_{2}: A \rightarrow \mathbf{C}$, the diagram of Hilbert spaces and unitary isomorphisms

is actually commutative. One can prove this by applying Theorem 3 to the state $\phi_{0} \oplus \phi_{1} \oplus \phi_{2}$ on $M_{3}(A)$.

