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Let A be a x-algebra (in the purely algebraic sense). Then we there exists a canonical A-A bimodule M,
given by A itself. For x € A, let I, 7, : M — M denote the operations given by left and right multiplication
by z. The *-operator on A determines a C-antilinear map J : M — M. Moreover, this map exchanges left
and right multiplication in the following sense: for x € A and y € M, we have

J(l:cy) = J(xy) = (xy)* =y =71y (Z/*) =Ty JYy.

That is, we have r .« = Jl,J.
This purely algebraic construction has the following features:

(1) Allleft A-module maps from M to itself are given by the right action of A on M, and all right A-module
maps from M to itself and given by the left action of A on M.

(2) If z belongs to the center of A, then I, and r, coincide.

Our goal in the next few lectures is to develop Tomita-Takesaki theory, which reconstructs an analogous
picture in the setting of von Neumann algebras. If A is a von Neumann algebra, we are generally interested
in bimodules which are themselves Hilbert spaces. Usually, we cannot view A as a bimodule over itself in this
sense. However, we can construct something which is very analogous. Suppose that V is a representation
of A containing a cyclic and separating vector v. In the last lecture, we studied the unbounded operator
So : V — V with domain Av, given by Sp(zv) = x*v. We saw that this operator is closable, and that its
closure S is injective, densely defined, and has dense image. It follows that S admits a spectral decomposition
S=J A%, where J is antiunitary and A7 is a self-adjoint unbounded C-linear operator.

Definition 1. Let F' : V. — W be an unbounded operator between Hilbert spaces. Assume that F' is
injective on the domain V; of F. Then we can define a new unbounded operator F~! : W — V with domain
F(Vp), given by F~1(Fv) = v. Note that the graphs of F' and F~! are identical (as subsets of V & W, so
that FF~! is closed if and only if F is closed. If not, then the closures of F' and F~! agree (provided both

are defined). That is, if F' is closable and its closure F is injective, then F~! is closable and Fl=F1

In our situation, we have Sy ' = Sy (since the operation x ~ z* is its own inverse). It follows that
S~1 = 5. Let A~ denote the inverse of AZ. Then we get

JA? =S =81 =A"3] = (JATZ ]
From the uniqueness of the polar decomposition we deduce the following;:
Proposition 2. The operator J is an antiunitary involution (that is, J* =id), and JA~: = A3 ].
Next week, we will prove the following result:

Theorem 3. Let A be a von Neumann algebra, V' a representation of A with a cyclic and separating vector
v, and let S = JAZ be as before. Then:



(1) We have A’ = JAJ. That is, conjugation by J induces a conjugate-linear isomorphism of A with its
commutant A’.

(2) If z € Z(A), then Jz = z*J.

Remark 4. In the situation of Theorem 3, we can define a right action of A on V by means of a map
p: A°? — B(V) given by
p(x)(v) = Ja* Ju.

Assertion (1) says that p induces an isomorphism from A°P to the commutant A’ of A, and assertion (2)
says that this isomorphism is given by z — 2* for z € Z(A) = AN A’. In particular, the right action of A on
V' commutes with the left action of A on V', so that we can regard V as an A-A bimodule.

We would like to say that Theorem 3 furnishes us with a canonical A-A bimodule, analogous to the purely
algebraic situation discussed above. However, the construction depends on a choice of pair (V,v), where V
is a representation of A and v € V is a cyclic and separating vector. Note that to give a pair (V,v) where v
is cyclic is equivalent to giving the (ultraweakly continuous) state ¢ : A — C, given by ¢(x) = (zv,v). Note
that v is separating if and only if (zv,zv) > 0 for all nonzero x € A. We can rewrite this as ¢(z*z) > 0
for x # 0. That is, v is separating if and only if the state ¢ is faithful, in the sense that it does not vanish
on nonzero positive elements of A. We can therefore think of Theorem 3 as constructing an A-A bimodule
given a choice of faithful ultraweakly continuous state ¢ : A — C.

Suppose we are given two different faithful (ultraweakly continuous) states ¢, : A — C, from which we
can construct a pair of representations V; and V;, with cyclic vectors vy and vy,. We would like to compare
these representations. To this end, consider the von Neumann algebra B : M3(A) of 2-by-2 matrices with
coefficients in A. We define a linear functional ¢ ® 1 : B — C by the formula

@ev)(? )=o) +w(d.

c
The associated inner product on B is given by

( Z Z ), ( Z Z/, ) d(a’*a) + (*c) + p(b*b) + b(d*d).

Let W denote the Hilbert space completion of B with respect to this inner product. We can think of the
elements of W as the space of matrices

with v,v" € V, and w,w’ € V. From this description, we immediately see that ¢ @ ¢ is a faithful state on

B. We can think of the commutant B’ as consisting of matrices ( ) where F' € Aib belongs to the

F G
G
commutant of A in Vi, G’ € Aﬁp, F" € Homa(Vy, V), and G € Homyu (Vy, V). Let us apply Theorem 3 to
the pairs (A4,Vy), (A,Vy), and (B, W). We obtain antiunitary involutions

J¢ZV¢—)V¢ J¢2Vw—>V¢ J: W —W.
Unwinding the definitions, we see that J is given by the formula

voow Jpv  U®)

J( / ’):(U’(w) Jw” )

v w



for some antiunitary isomorphisms U : V,, — V,, and U’ : Vi, — V. Since J? =1, we have U’ = U~!. We
now compute

0 0 voow 0 0 Jpv Uv'
0 0
o ( J¢’U U’U/ )
_ (0 Ul
o 0 J¢,UU/ ’

0 F G
0 F G
immediately that G = UJy = JyU. From this, we deduce that UJy is an A-linear unitary isomorphism «
from Vy to Vi satisfying Jy o @ = @ o Ju. We have proven:

Since the operator J( (1) )J belongs to B’, it is given by some matrix ( ) above. It follows

Proposition 5. Let A be a von Neumann algebra, let ¢ and v be faithful ultraweakly continuous states on
A, let Vy and Vi be the associated representations, with antiunitary operators Jy and Jy given in Theorem
3. Then there exists an A-linear unitary isomorphism o : Vi — Vi such that ao Jy = Jy o . In particular,
« is an isomorphism of A-A bimodules.

Remark 6. The isomorphism « is canonical. In fact, it is almost unique. Suppose we are given a pair of
isomorphisms a, 3 : Vi — V, satisfying the requirements of Proposition 5. Let v = 87! o a. Then 7 is
a unitary isomorphism of Vy with itself which commutes with the action of A and with Jg. It therefore
commutes with the action of the commutant Ay = J,AJ,. It follows that v € AN A} = Z(A). Theorem 3
then gives Js 0y = v* o Jy, so that v = v*. Since ~ is unitary, we deduce that v? = 1. If A is a factor, this
means that v = +1: that is, the isomorphisms « and § differ by at most a sign.

Definition 7. Let A be a von Neumann algebra which admits an ultraweakly continuous faithful state
¢ (for example, any separable von Neumann algebra). We let L?(A) denote the Hilbert space V,, and
J : L?(A) — L?(A) the antiunitary isomorphism appearing in Theorem 3. It follows from the above
considerations that the pair (L?(A), J) is independent of the choice of ¢ up to isomorphism.

Remark 8. Since the isomorphism « appearing in Proposition 5 is not quite unique, one might worry that
L?(A) is not quite well-defined. However, although « is not unique it is nevertheless canonical. That is,
given a triple of ultraweakly continuous faithful states ¢q, ¢1, 2 : A — C, the diagram of Hilbert spaces and
unitary isomorphisms

Vo

@1 Q12

@02
V¢0 V¢2

is actually commutative. One can prove this by applying Theorem 3 to the state ¢g @ ¢1 © ¢ on M3(A).



