
Math 261y: von Neumann Algebras (Lecture 28)

November 6, 2011

Let A be a von Neumann algebra which admits a faithful (ultraweakly continuous) finite trace φ. In the
last lecture, we saw that the associated representation Vφ is equipped with an antiunitary involution J such
that conjugation by J carries A isomorphically to its commutant A′. Our goal in this lecture (and those
which follow) is to see how much of this picture we can reproduce without the assumption that A is finite.

Suppose we are given a realization A ↪→ B(V ) with commutant A′. We might ask whether or not A′ is
even abstractly isomorphic to Aop. The answer is in general no: for example, if A = B(V ), then A′ ' C
is generally much smaller than A. In some sense, this is because the defining representation of B(V ) is too
small. Let us now try to articulate the problem more precisely.

Definition 1. Let A be a von Neumann algebra, V a representation of A, and v ∈ V a vector. Recall that
v is said to be a cyclic vector if Av is dense in V . We say that v is a separating vector if it is not annihilated
by any elements of A: that is, if the map x 7→ xv is an isomorphism of vector spaces A→ Av.

Remark 2. Let φ : A → C be an (ultraweakly continuous) state, Vφ the associated representation, and
v ∈ Vφ the generating vector. For each x ∈ A, we have (xv, xv) = φ(x∗x). Thus v is a separating vector
if and only if φ(x∗x) = 0 implies x = 0. In other words, v is separating if and only if φ is faithful (that
is, φ does not annihilate any nonzero positive elements of A). When φ is a trace, this is equivalent to the
condition that the representation Vφ is faithful. In general, it is much stronger. For example, the tautological
representation of B(V ) on V does not have any separating vectors unless dim(V ) ≤ 1.

Proposition 3. Let A ⊆ B(V ) be a von Neumann algebra and v ∈ V a vector. The following conditions
are equivalent:

(1) v is a separating vector for A.

(2) v is a cyclic vector for A′.

Proof. Suppose first that (1) is satisfied. If v is not a cyclic vector for the action of A′, then we can decompose
V as a direct sum A′v ⊕W of A′-representations. Let e : V → V denote the orthogonal projection onto W .
Then e ∈ A′′ = A and ev = 0, contradicting the assumption that v is separating.

Conversely, suppose that v is a cyclic vector for A′. Let I = {x ∈ A : xv = 0}. Then I is an ultraweakly
closed left ideal of A, hence of the form Ae for some projection e ∈ A. Then V decomposes as a direct sum
eV ⊕ (1 − e)V as representations of A′. Since eV = 0, we have v ∈ (1 − e)V . Using (2) we deduce that
(1− e)V = V . It follows that e = 0, so I = 0 and v is a separating vector.

Example 4. Let A = B(V ). Then A is Morita equivalent to C: all representations of A have the form
V ⊗W , for some Hilbert space W . Every vector v ∈ V ⊗W determines a bounded operator λ : V →W , and
v is separating if and only if λ is injective. In particular, a separating vector exists only when the dimension
of W is at least as large as the dimension of V . If V is separable, this condition is also sufficient. But if V
is not separable, then one can never find a separating vector: every v ∈ V ⊗W belongs to V ⊗W0 for some
separable subspace W0 ⊆W , and the induced map V →W0 cannot be injective.
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Example 4 shows that one cannot expect to find separating vectors in complete generality. However, they
always exist under some mild assumptions.

Proposition 5. Let A be a separable von Neumann algebra (that is, the predual of A is separable as a
Banach space). Then there exists a representation V of A containing a cyclic and separating vector.

Proof. It suffices to find a representation V of A containing a separating vector v (we can then replace V
by Av to ensure that v is also cyclic). Choose an embedding A ⊆ B(V0), where V0 is a separable Hilbert
space. We may assume without loss of generality that V0 has a countable orthonormal basis e1, e2, . . .. Let
W be another Hilbert space with countable orthonormal basis f1, f2, . . .. An easy calculation shows that the
vector ∑ en ⊗ fn

n

is a separating vector for the action of B(V0) on V0 ⊗W , hence a separating vector for the action of A on
V0 ⊗W .

Remark 6. We will eventually see that if V is a representation of A containing a cyclic and separating
vector, then V is unique up to (isometric) isomorphism.

Let us now suppose that V is a representation of A containing a cyclic separating vector v. Motivated
by the constructions of the previous lecture, we can try to define an operator S0 : V → V by the formula
S0(xv) = x∗v. This formula makes sense so long as v is separating (since x is determined by xv). However,
there is no reason in general why it should be a bounded operator. We therefore need a brief digression
about the theory of unbounded operators.

Definition 7. Let V and W be Hilbert spaces (over R or C). An unbounded operator from V to W is a
linear subspace V0 ⊆ V (not necessarily closed) and a linear map F : V0 → W (not necessarily continuous).
We refer to V0 as the domain of F . We say that F is densely defined if V0 is dense in V .

The graph of F is the subset Γ(F ) = {(v, F (v)) : v ∈ V0} ⊆ V0 ×W . We say that F is closed if Γ(F ) is
a closed subset of V ×W . We say that F is closable if the closure of Γ(F ) is the graph of an unbounded
operator: that is, if the intersection Γ(F ) ∩ (V × {0}) is trivial. In this case, Γ(F ) is the graph of another
unbounded operator F : V1 →W , where V1 is a subspace of V containing V0.

Note that if F is closed and the domain of F is equal to V , then F is automatically a bounded operator:
this follows from the closed graph theorem.

Definition 8. Let F be a densely defined unbounded operator from V to W with domain V0. We define
an unbounded operator F ∗ from W to V as follows. The domain of F ∗ is the collection of those vectors
w ∈ W such that the functional v → (F (v), w) is bounded (a priori, this functional is defined only on V0).
In this case, we let F ∗(w) denote the unique element in v such that (v, F ∗(w)) = (F (v), w) for all v ∈ V .
Note that F ∗ is automatically a closed operator. We say that F is self-adjoint if F = F ∗ (in which case F
is automatically closed).

We will need a few facts about polar decompositions of unbounded operators. First, let us consider the
case of bounded operators.

Proposition 9. Let F : V → W be a bounded map of Hilbert spaces which is injective with dense image.
Then F factors as a composition

V
|F |→ V

U→W,

where |F | is a positive self-adjoint operator and U is an isometric isomorphism. Moreover, this factorization
is unique.

Proof. Let |F | be the unique positive square root of F ∗F . Since F has dense image, F ∗ is injective; it follows
that F ∗F is injective, so that |F | is injective. Since |F | is self-adjoint, it has dense image. For v, v′ ∈ V , we
have

(|F |v, |F |v′)V = (|F |2v, v′)V = (F ∗Fv, v′)V = (Fv, Fv′)W ,
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Thus there is a unique isometry U : V →W such that U(|F |v) = Fv. Since F has dense image, U has dense
image; it follows that U is an isomorphism.

Now suppose that F is a closed unbounded operator from a Hilbert space V to a Hilbert space W , and
let Γ denote the graph of F . We regard Γ as a Hilbert space in its own right, and let p : Γ → V and
q : Γ→W denote the projection maps. Then p is injective, and has dense image since F is densely defined.
Using Proposition 9, we can identify Γ with V , so that under this identification p corresponds to a positive
self-adjoint operator. If F is injective with dense image, then Proposition 9 implies that q factors as a
composition

V
|q|→ V

U→W.

Let |F | denote the closed operator from V to itself given by composing F with U−1. That is, the domain of
|F | is the image of p, and |F | is given by the formula |F |p(v) = |q|(v).

Since the embedding of Γ into V ⊕W is an isometry, we have

(v, v) = (pv, pv) + (qv, qv) = (p2v, v) + (|q|2v, v)

for all v ∈ V . It follows that p2 = 1− |q|2, so that both p and |q| belong to the commutative von Neumann
subalgebra of B(V ) generated by p2. It follows that p and |q| commute with each other.

We claim that the operator |F | is self-adjoint. To prove this, we note that v′ = |F |∗v if and only if, for
every v′′ ∈ V , we have (|q|(v′′), v) = (pv′′, v′). Since p and |q| are self adjoint, we can rewrite this equation as
(v′′, |q|v) = (v′′, pv′). This is satisfied for all v′′ ∈ V if and only if pv′ = |q|v. In this case, set u = pv + |q|v′.
Then

pu = p2v + p|q|v′ = p2v + |q|pv′ = p2v + |q|2v = v

|q|u = |q|pv + |q|2v′ = p|q|v + |q|2v′ = p2v′ + |q|2v′ = v′

from which it follows that |F |(v) = v′. Conversely, if |F |(v) = v′, then there exists u ∈ V such that v = pu
and v′ = |q|u, from which the equality p|q| = |q|p gives pv′ = |q|v. This proves:

Proposition 10 (Polar Decomposition, Unbounded Version). Let F : V → W be a closed unbounded
operator between Hilbert spaces. Assume that F is densely defined, injective, and has dense image. Then F
factors as a composition

V
|F |→ V

U→W

where U is a unitary isomorphism and |F | is a positive self-adjoint unbounded operator (this means that
(|F |v, v) ≥ 0 for all v in the domain of |F |: in our case, it follows from the calculation

(|F |pv, pv) = (|q|v, pv) = (p|q|v, v) ≥ 0,

since p|q| is a product of commuting positive operators and therefore positive).

Remark 11. It is not hard to see that the factorization F = U |F | of Proposition 10 is unique. It is called
the polar decomposition of F .

Remark 12. Proposition 10 is also valid for real Hilbert spaces (this can be deduced from the complex case,
by passing to the complexification).

Let us now return to the case of interest: A is a von Neumann algebra acting on a representation V with
a cyclic separating vector v. We define an unbounded operator S0 : V → V with domain Av by the formula

S0(xv) = x∗v.

Proposition 13. In the situation above, the operator S0 is closable. Moreover, the closure S of S0 is
injective.
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Proof. Let Γ0 denote the graph of S0 and Γ its closure. For each f ∈ A′ and x ∈ A, we have

(S0(xv), fv) = (x∗v, fv) = (v, xfv) = (v, fxv) = (f∗v, xv).

It follows by continuity that for (w,w′) ∈ Γ we have (w′, fv) = (f∗v, w). In particular, if w = 0, then
(w′, fv) = 0 for all f ∈ A′. Since v is a separating vector for the action of A on V , it is a cyclic vector for the
action of A′ on V : that is, w′ = 0. This proves that Γ is the graph of an unbounded operator: that is, S0 is
closable. The same argument shows that if w′ = 0, then w = 0: that is, the closure S of S0 is injective.

Applying Proposition 10 to the closed unbounded operator S : V → V (as a map of real Hilbert spaces)

we deduce that S admits a factorization S = J∆
1
2 , where J is an isometry (of real Hilbert spaces) and ∆

1
2

is a self-adjoint unbounded operator. Since S0 is C-antilinear, S has the same property. If we regard i ∈ C
as a real linear operator from V to itself, we get

(iJ)∆
1
2 = iS = −Si = −J∆

1
2 i = (−Ji)(i−1∆

1
2 i).

From the uniqueness of the polar decomposition, we deduce

i−1∆
1
2 i = ∆

1
2 iJ = −Ji.

That is, ∆
1
2 is a C-linear operator, and J is C-antilinear. We will study the situation further in the next

lecture.
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