
Math 261y: von Neumann Algebras (Lecture 26)

November 1, 2011

Our goal in this lecture is to prove the following result, which was asserted without proof in the last
lecture:

Theorem 1 (Ryll-Nardzewski). Let M be a Banach space, let K be a convex subset of M which is compact
with respect to the weak topology on M , and let G be a group of isometries of M which preserves K. Then
there is an element of K which is fixed by the action of G.

As a warm-up, we prove the following simpler result:

Proposition 2. Let M be a Banach space, let K be a convex subset of M which is compact with respect to
the weak topology on M , and let F : M → M be a bounded linear map which preserves K (not necessarily
an isometry). Then there is an element x ∈ K satisfying F (x) = x.

Proof. For each integer n, let Fn denote the bounded linear map

x 7→ 1

n
(x+ F (x) + F 2(x) + · · ·+ Fn−1(x)).

Since K is convex, each of these maps carries K into itself. Let Kn = Fn(K) ⊆ K, so that Kn is a weakly
compact subset of K. We first claim that the intersection

⋂
Kn is nonempty. Since K is weakly compact,

it will suffice to show that each finite intersection

Kn1 ∩ · · · ∩Knm

is nonempty. This follows from the observation that this intersection contains

Fn1
(Fn2

(· · · (Fnm(x))))

for each x ∈ K (note that the operators Fj commute with one another).
Let x ∈

⋂
Kn. For each integer y, we can write x = Fn(y) for some y ∈ K. It follows that

F (x)− x = F (
y + · · ·+ Fn−1y

n
)− y + · · ·+ Fn−1(y)

n
=

1

n
(Fn(y)− y) ∈ 1

n
(K −K).

Since K − K is weakly compact, every weakly open neighborhood of 0 in M contains 1
n (K − K) for n

large enough. It follows that F (x) − x belongs to every weakly open neighborhood of the origin, so that
F (x) = x.

We now turn to the proof of Theorem 1. The first observation is:

(a) We may assume without loss of generality that G is finitely generated.
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Write G as a union of finitely generated subgroups Gα. Then the fixed point set KG is given by the
intersection

⋂
αK

Gα . By compactness, if each KGα is nonempty, then KG will be nonempty.
Let us suppose that G contains elements g1, . . . , gn ∈ G. Let F : M → M be the linear map given by

F (x) = g1(x)+···+gn(x)
n , so that F carries K into itself. Using Proposition 2, we can choose an element x ∈ K

such that F (x) = x. We will prove that gi(x) = x for all x. Taking the gi to be a set of generators for the
group G, we will obtain a proof Theorem 1.

Suppose otherwise. We may assume without loss of generality that there exists some integer 1 ≤ m ≤ n
such that gi(x) 6= x for i ≤ m, and gi(x) = x for i > m. Then

x = F (x) =
1

n
(
∑

1≤i≤m

gi(x)) +
n−m
n

x

so that
m

n
x =

1

n

∑
1≤i≤m

gi(x)

and therefore x is fixed by the operator y 7→ g1(y)+···+gm(y)
m . We may therefore replace the sequence

{g1, . . . , gn} by {g1, . . . , gm}, and thereby reduce to the case where gi(x) 6= x for all i.
To obtain a contradiction, we are free to replace G by the group generated by the elements g1, . . . , gm,

and K by the closed convex hull of the orbit Gx ⊆ K (in the weak topology). In particular, K is contained
in the closed subspace of M generated by a countable set of vectors. Replacing M by this closed subspace,
we may assume that M is separable.

Choose a real number ε > 0 such that ||gi(x) − x|| > ε for each i. We will need the following technical
lemma:

Lemma 3. There exists a weakly compact convex subset K ′ ( K such that the difference K − K ′ has
diameter ≤ ε.

Let us assume Lemma 3 for the moment. Since K is the closed convex hull of Gx and K ′ ( K is closed
and convex, there must exist an element h ∈ G such that hx /∈ K ′. Then

hx = hF (x) =
hg1(x) + · · ·+ hgn(x)

n
/∈ K ′.

Since K ′ is convex, this implies that hgi(x) /∈ K ′ for some i. Then hx, hgi(x) ∈ K −K ′. Since K −K ′ has
diameter ≤ ε, we conclude that ||hgi(x) − h(x)|| ≤ ε. Since h is an isometry, we obtain ||gi(x) − x|| ≤ ε,
contradicting our assumption.

It remains to prove Lemma 3. Let E denote the set of extreme points of K (that is, points which do
not lie on the interior of any line segment contained in K). Since K is compact (in the weak topology), the
Krein-Milman theorem asserts that K is the closed convex hull of E. Let E ⊆ K denote the weak closure
of E. Let B denote the closed ball of radius ε

3 around the origin. Note that B is also closed in the weak
topology (since y ∈ B if and only of |φ(y)| ≤ ε

3 for all linear functionals φ of norm 1). Since M is separable,
there exists a countable collection of points yi ∈ M such that the sets yi + B cover M . In particular, the
intersections

(yi +B) ∩ E

give a countable covering of E by weakly closed subsets. Since E is weakly compact, the Baire category
theorem implies that one of the sets (yi + B) ∩ E has nonempty interior U in E (with respect to the weak
topology),

Let K1 be the closed convex hull of E − U and let K2 be the closed convex hull of (yi + B) ∩ E. Then
K1 and K2 are closed convex subsets of K. Since K is the closed convex hull of E ⊆ (E − U) ∪ (yi +B), it
is the convex join of K1 and K2. That is, K can be described as the image of the map

K1 ×K2 × [0, 1]→M
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(v, w, t) 7→ tv + (1− t)w.

For δ > 0, let K(δ) denote the image of the restriction of this map to K1 × K2 × [δ, 1]. We claim that if
δ is small enough, then K(δ) has the desired properties. It is clear that each Kδ is a weakly closed convex
subset of K. We are therefore reduced to proving two things:

(i) For δ sufficiently small, the set K − K(δ) has diameter ≤ ε. Note that K is contained in a ball of
some finite radius C (when regarded as a set of linear operators on M∨), K is pointwise bounded by
compactness, hence uniformly bounded). If y, y′ ∈ K −Kδ, then we can write

y = tv + (1− t)w y′ = t′v′ + (1− t′)w′

for t, t′ < δ. Then

||y − y′|| ≤ t||v||+ t||w||+ t′||v′||+ t′||w′||+ ||w − w′|| ≤ 4tC +
2

3
ε ≤ 4δC +

2

3
ε,

where the bound on ||w−w′|| comes from the observation that K2 ⊆ yi+B has diameter 2
3ε. Choosing

δ < ε
12C will achieve the desired result.

(ii) The set K(δ) is distinct from K if δ is positive. Since U is a nonempty open subset of E, it contains
some element y ∈ E. We claim that y /∈ K(δ): that is, we cannot write y = tv + (1 − t)w where
t ≤ 1− δ, v ∈ K1, and w ∈ K2. Since y is an extreme point of K, it will suffice to show that y /∈ K1.

Since the weak topology on M is locally convex, we can choose a (weakly) open convex set V ⊆ M
whose (weak) closure V satisfies (y−V )∩E ⊆ U . Since E−U is compact, it admits a finite covering by
weakly open sets z1 + V, z2 + V, · · · , zk + V where zi ∈ E. It follows that K1 is contained in the closed
convex hull of

⋃
((zi+V )∩E), which is contained in the convex join of the sets (zi+V )∩K. If y ∈ K1,

then since y is an extreme point of K, we deduce that y ∈ zi+V for some i. Then zi ∈ (y−V )∩E ⊆ U ,
contradicting our assumption that zi ∈ E − U .
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