Math 261y: von Neumann Algebras (Lecture 26)

November 1, 2011

Our goal in this lecture is to prove the following result, which was asserted without proof in the last
lecture:

Theorem 1 (Ryll-Nardzewski). Let M be a Banach space, let K be a convex subset of M which is compact
with respect to the weak topology on M, and let G be a group of isometries of M which preserves K. Then
there is an element of K which is fized by the action of G.

As a warm-up, we prove the following simpler result:

Proposition 2. Let M be a Banach space, let K be a convex subset of M which is compact with respect to
the weak topology on M, and let F: M — M be a bounded linear map which preserves K (not necessarily
an isometry). Then there is an element x € K satisfying F(z) = x.

Proof. For each integer n, let F;, denote the bounded linear map
1
v (@t F@) + F*(2) + -+ "7 ().

Since K is convex, each of these maps carries K into itself. Let K,, = F,,(K) C K, so that K, is a weakly
compact subset of K. We first claim that the intersection [ K, is nonempty. Since K is weakly compact,
it will suffice to show that each finite intersection

K, Nn---NK,,
is nonempty. This follows from the observation that this intersection contains

for each x € K (note that the operators F; commute with one another).
Let = € (| K,,. For each integer y, we can write x = F,,(y) for some y € K. It follows that

yt APy gtk FYy) L

F(z)—x=F( - - "

(F"(y) ~ ) € (K ~ K).

Since K — K is weakly compact, every weakly open neighborhood of 0 in M contains %(K — K) for n
large enough. It follows that F(z) — = belongs to every weakly open neighborhood of the origin, so that
F(z) == O

We now turn to the proof of Theorem 1. The first observation is:

(a) We may assume without loss of generality that G is finitely generated.



Write G as a union of finitely generated subgroups G,. Then the fixed point set K is given by the
intersection ), K Ga . By compactness, if each K% is nonempty, then K¢ will be nonempty.

Let us suppose that G contains elements gi,...,9, € G. Let F : M — M be the linear map given by
F(z) = M, so that F' carries K into itself. Using Proposition 2, we can choose an element x € K
such that F(z) = . We will prove that g;(x) = « for all z. Taking the g; to be a set of generators for the
group G, we will obtain a proof Theorem 1.

Suppose otherwise. We may assume without loss of generality that there exists some integer 1 < m <n
such that g;(z) # x for i < m, and ¢;(z) = x for i > m. Then

n—m
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so that

Ew:% > gilx)

n
1<i<m

and therefore z is fixed by the operator y — w We may therefore replace the sequence

{91,--+,9n} by {91,--.,9m}, and thereby reduce to the case where g;(x) # x for all i.

To obtain a contradiction, we are free to replace G by the group generated by the elements g1, ..., gm,
and K by the closed convex hull of the orbit Gz C K (in the weak topology). In particular, K is contained
in the closed subspace of M generated by a countable set of vectors. Replacing M by this closed subspace,
we may assume that M is separable.

Choose a real number € > 0 such that ||g;(z) — x|| > € for each i. We will need the following technical
lemma:

Lemma 3. There exists a weakly compact conver subset K' C K such that the difference K — K' has
diameter < €.

Let us assume Lemma 3 for the moment. Since K is the closed convex hull of Gx and K’ C K is closed
and convex, there must exist an element h € G such that hz ¢ K’. Then

_ hgi(x) + - + hgn(x)
n

Since K’ is convex, this implies that hg;(z) ¢ K’ for some i. Then ha, hg;(z) € K — K’. Since K — K’ has
diameter < €, we conclude that ||hg;(z) — h(z)|| < e. Since h is an isometry, we obtain ||g;(z) — z|| < e,
contradicting our assumption.

It remains to prove Lemma 3. Let E denote the set of extreme points of K (that is, points which do
not lie on the interior of any line segment contained in K). Since K is compact (in the weak topology), the
Krein-Milman theorem asserts that K is the closed convex hull of E. Let E C K denote the weak closure
of E. Let B denote the closed ball of radius § around the origin. Note that B is also closed in the weak
topology (since y € B if and only of [¢(y)| < £ for all linear functionals ¢ of norm 1). Since M is separable,
there exists a countable collection of points y; € M such that the sets y; + B cover M. In particular, the
intersections

hx = hF(x) ¢ K’

(yi+ B)NE
give a countable covering of E by weakly closed subsets. Since E is weakly compact, the Baire category
theorem implies that one of the sets (y; + B) N E has nonempty interior U in E (with respect to the weak

topology),
Let K, be the closed convex hull of E — U and let K5 be the closed convex hull of (yi+ B)N E. Then

K1 and K, are closed convex subsets of K. Since K is the closed convex hull of E C (E — U) U (y; + B), it
is the convex join of K7 and K5. That is, K can be described as the image of the map

K1><K2><[0,1]—>M



(v,w,t) — tv+ (1 —t)w.

For 0 > 0, let K(9) denote the image of the restriction of this map to K7 x Ky x [4,1]. We claim that if
0 is small enough, then K (J) has the desired properties. It is clear that each K is a weakly closed convex
subset of K. We are therefore reduced to proving two things:

(4)

For ¢ sufficiently small, the set K — K (6) has diameter < e. Note that K is contained in a ball of
some finite radius C' (when regarded as a set of linear operators on MV), K is pointwise bounded by
compactness, hence uniformly bounded). If y,y" € K — K, then we can write

/

y=tv+(1-thw ¢y =t +1-tw

for ¢,t' < 0. Then
/ ! / / / / 2 2
lly = Il < tlloll + tlwll + [ + T[] + llw — w']] < 46C + ge < 45C + 3¢,

where the bound on ||w —w’|| comes from the observation that K3 C y; 4+ B has diameter Ze. Choosing
0 < 13 will achieve the desired result.

The set K(§) is distinct from K if § is positive. Since U is a nonempty open subset of E, it contains
some element y € E. We claim that y ¢ K(0): that is, we cannot write y = tv + (1 — t)w where
t<1-—90,v€ K, and w € Ky. Since y is an extreme point of K, it will suffice to show that y ¢ K.

Since the weak topology on M is locally convex, we can choose a (weakly) open convex set V' C M
whose (weak) closure V satisfies (y—V)NE C U. Since E—U is compact, it admits a finite covering by
weakly open sets 21+ V, 2o +V, .-+, 2, + V where z; € E. It follows that K is contained in the closed
convex hull of | J((z; +V)NE), which is contained in the convex join of the sets (z;+V)NK. If y € Ky,
then since y is an extreme point of K, we deduce that y € z;+V for some i. Then z; € (y—V)NE C U,
contradicting our assumption that z; € E — U.



