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Our goal in this lecture is to begin the proof of the following result:

Theorem 1. Let A be a finite von Neumann algebra. Then A is a product of von Neumann algebras Aα,
each of which admits an ultraweakly continuous, faithful finite trace.

The proof proceeds in several steps.

Lemma 2. Let A be a von Neumann algebra and let φ : A→ C be an ultraweakly continuous faithful finite
trace. Then A factors as a product A′ ×A′′, where φ is a faithful finite trace on A′ and vanishes on A′′.

Proof. Let Vφ denote the cyclic representation of A determined by φ and v ∈ Vφ its cyclic vector, so that
(xv, yv) = φ(y∗x). Let I ⊆ A be the subset consisting of elements x ∈ A such that xv = 0. Then I is
an ultraweakly closed left ideal of A. Note that I = {x ∈ A : φ(x∗x) = 0}. Since φ is a trace, we have
φ(x∗x) = φ(xx∗). It follows that I is a ∗-ideal of A. It follows that I = eA for some central projection e ∈ A.
We claim that the decomposition A = (1− e)A× eA has the desired property. It is clear that φ vanishes on
eA (since eV = 0). To see that φ is faithful on (1 − e)A, suppose that h ∈ (1 − e)A is a positive element
with φ(h) = 0. Writing h = x∗x for x ∈ (1− e)A, we obtain

φ(x∗x) = (xv, xv) = 0,

so that x ∈ I = eA and therefore x = 0.

Let A be an arbitrary von Neumann algebra. Choose a maximal collection of mutually orthogonal
central projections eα ∈ A such that each eαA admits an ultraweakly continuous faithful finite trace. Then
A = A′×

∏
α eαA. By maximality, the von Neumann algebra A′ does not admit any ultraweakly continuous

finite traces. Consequently, Theorem 1 is a consequence of the following:

Proposition 3. Let A be a nonzero finite von Neumann algebra. Then A admits an ultraweakly continuous
faithful finite trace.

To prove this, let S(A) denote the collection of all ultraweakly continuous states on A, and let U(A)
denote the unitary group of A. Then U(A) acts on S(A), via the formula φu(x) = φ(u−1xu).

Lemma 4. Let A be a von Neumann algebra and let φ : A → C be a state. The following conditions are
equivalent:

(1) The state φ is a trace.

(2) The state φ is a fixed point for the action of U(A). That is, we have φu = φ for each unitary element
u ∈ A.

Proof. If (1) is satisfied, then we have

φu(x) = φ(u−1xu) = φ(uu−1x) = φ(x)
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so that condition (2) is also satisfied. Conversely, suppose that φ satisfies (2). Then φ(x) = φ(u−1xu) for all
u ∈ U(A), x ∈ A. Taking x = uy, we obtain φ(uy) = φ(yu) for each y ∈ A and each u ∈ U(A). We wish to
prove that the analogous assertion holds for an arbitrary element u ∈ A. To prove this, it suffices to observe
that A is spanned by U(A) as a complex vector space. That is, every element of z ∈ A can be written as
a complex linear combination of unitary elements (to prove this, we may assume that z is Hermitian. In
this case, we may as well restrict to the commutative von Neumann subalgebra of A generated by z. We
may therefore assume that A ' L∞(X) for some measure space X, in which case the desired result is not
difficult).

To find our trace, we would like to prove that there exists a fixed point for the action of U(A) on the set
S(A). Here we need the following result from functional analysis, which we will prove in the next lecture:

Theorem 5 (Ryll-Nardzewski). Let M be a Banach space, let K be a convex subset of M which is compact
with respect to the weak topology on M , and let G be a group of bounded operators on M which preserves K.
Then there is an element of K which is fixed by the action of G.

To apply this theorem to our situation, we will take M to be the predual of A: that is, the space of
ultraweakly continuous linear functionals on M . Choose an ultraweakly continuous state φ ∈ S(A) ⊆ M .
Let K0 = {φu : u ∈ U(M)}, and let K denote the closed convex hull of K0 in M (where we regard M as
endowed with the weak topology). We will prove:

Proposition 6. In the situation above, the set K is compact with respect to the weak topology on M .

Assuming this result for the moment, it follows from Theorem 5 that the group U(A) has a fixed point
on K. Since K ⊆ S(A), this fixed point is an ultraweakly continuous state on A. Lemma 4 then implies
that this state is a trace, and the proof of Proposition 3 will be complete.

It remains to prove that the set K is weakly compact. Let A∨ denote the Banach space dual of A,
endowed with the weak ∗-topology. We will regard M as a subspace of A∨. Let K denote the closure of K
in A∨. Then K is a weak ∗-closed subset of the unit ball of A∨, hence compact for the weak ∗-topology.
To prove the compactness of K, it will suffice to show that K = K: that is, that every functional ρ ∈ K is
automatically ultraweakly continuous.

Since each ρ ∈ K is a state, the ultraweak continuity of ρ is equivalent to complete additivity. Let
{eα}α∈I be a collection of mutually orthogonal projections of A. We have an inequality∑

ρ(eα) ≤ ρ(
∑

eα),

and we wish to prove that it is an equality. In other words, we wish to show that for every positive real
number ε, there exists a finite set I0 ⊆ I such that ρ(

∑
α/∈I0 eα) ≤ ε.

Assume otherwise. Then, in particular, we have

ρ(
∑
α

eα) > ε.

It follows that there exists ρ0 ∈ K0 such that ρ0(
∑
α eα) > ε. Since ρ0 is completely additive, there is a finite

set I0 ⊆ I such that ρ0(
∑
α∈I0 eα) > ε. Since ρ(

∑
α/∈I0 eα) > ε, we can find another functional ρ1 ∈ K0 such

that ρ1(
∑
α/∈I0 eα) > ε. Using the complete additivity of ρ1, we can choose a finite subset I1 ⊆ I disjoint

from I0, such that ρ1(
∑
α∈I1 eα) > ε. Since ρ(

∑
α/∈I0∪I1 eα) > ε, we can find a functional ρ2 ∈ K0 such that

ρ2(
∑
α/∈I0∪I1 eα) > ε. Using the complete additivity of ρ2, we obtain a finite subset I2 ⊆ I disjoint from I0

and I1 such that ρ2(
∑
α∈I2 eα) > ε, and so forth. Write ρj = φuj for unitary elements uj ∈ U(A), and let

fj =
∑
α∈Ij eα. We then have a sequence of unitary elements

u0, u1, u2, . . . ∈ U(A)

and a sequence of mutually orthogonal projections

f0, f1, f2 ∈ A

such that φ(u−1j fjuj) > ε for all j. Since φ is ultraweakly continuous, this contradicts the following claim:
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Proposition 7. Suppose we are given an infinite sequence f0, f1, f2, . . . ∈ A of mutually orthogonal pro-
jections. Let g0, g1, . . . ∈ A be a collection of projections such that each gi is conjugate to fi (by a unitary
element of A). If A is finite, then the sequence gi converges to zero in the ultraweak topology (or even in the
ultrastrong topology).

Proof. We show that for every embedding A ⊆ B(V ), the sequence gi converges strongly to zero in B(V ).
Without loss of generality we may assume that

∑
fi = 1 (otherwise, set e = 1−

∑
fi, and adjoint e to the

beginning of both sequences). For each m ≥ 0, let V (m) denote the closed subspace of V generated by the
subspaces giV for i ≥ m. We have a decreasing sequence of closed subspaces

V (0) ⊇ V (1) ⊇ V (2) ⊇ · · ·

of V . Let pm denote the orthogonal projection from V onto V (m). For each v ∈ V , we have ||gm(v)|| ≤
||pm(v)||. It will therefore suffice to show that the operators pm converge strongly to zero. Equivalently, it
will suffice to show that the intersection

⋂
m≥0 V (m) is zero.

If m ≤ n, let V (m,n) denote the subspace of V generated by giV for m ≤ i ≤ n. Let W denote the
orthogonal complement of V (m,n− 1) in V (m,n). The composite map

gnV → V (m,n)→W

is surjective and A′-linear. It follows that W ≤ gnV ' fnV as representations of A′. Applying this
observation repeatedly, we obtain

V (m) ≤
⊕
i≥m

fiV

. Taking orthogonal complements, we obtain⊕
i<m

fiV = (
⊕
i≥m

fiV )⊥ ≤ V (m)⊥.

It follows that

(
⋂
m≥0

V (m))⊥ =
⋃
m≥0

V (m)⊥

is ≥
⊕

i<m fiV for each m, and is therefore ≥
⊕
fiV = V . Since V is finite as a representation of A′, this

implies that (
⋂
m≥0 V (m))⊥ = V : that is,

⋂
m≥0 V (m) = 0 as desired.
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