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In this lecture, we continue our study of faithful finite traces.

Proposition 1. Let A be a factor, and let φ, φ′ : A→ C be finite traces. Then φ = φ′.

Proof. Write A ⊆ B(V ), so that V is finite when regarded as a module over the commutant A′. It follows
that A′ is a factor either of type I or type II. If A′ has type I, then V is a finite sum of irreducible
representations of A′, so that A = A′′ is isomorphic to a finite dimensional matrix ring. In this case, the
uniqueness of the trace follows from linear algebra.

Let us assume that A′ has type II. Let R(A′)+ denote the set of isomorphism classes of finite represen-
tations of A′ and R(A′) the group obtained from R(A)+ by adjoining inverses, so that R(A′) is isomorphic
(as a linearly ordered abelian group) to the real numbers R. There is a unique order-preserving isomorphism
dim : R(A′)→ R which is normalized so that dim(V ) = 1. We will show that, for each projection operator
e ∈ A, we have φ(e) = dim(eV ). The same argument gives φ′(e) = dim(eV ), so that φ and φ′ coincide on
projections of A. Since the linear span of the set of projections in A is norm-dense in A, it will follow that
φ = φ′.

To prove that φ(e) = dim(eV ), we use φ to construct a map d : R(A′)+ → R. The construction proceeds
as follows. Given a finite representation W of A′, choose an integer n such that 1

2nW ≤ V (in the linearly
ordered group R(A′)). Then choose a isometric embedding ρ : 1

2nW ↪→ V . The image of ρ has the form eV
for some projection e ∈ A, and set d(W ) = 2nφ(e).

We claim that d is well-defined. We first show that the definition of d(W ) does not depend on the choice
of embedding ρ. Suppose ρ is an embedding 1

2nW ↪→ V whose image has orthogonal complement V0, and
that ρ′ : 1

2nW ↪→ V is an embedding with orthogonal complement V1. Then

V0 +
1

2n
W = V = V1 +

1

2n
W

in the group R(A′), so that V0 and V1 are isomorphic (as representations of A′). It follows that there is an
automorphism of V (as a representation of A′) which carries eV = ρ( 1

2nW ) to e′V = ρ′( 1
2nW ) and V0 to V1.

This automorphism is implemented by a unitary element u ∈ A satisfying e′ = ueu−1. Then

φ(e′) = φ(ueu−1) = φ(u−1ue) = φ(e).

We next show that d(W ) does not depend on the choice of n. Suppose that 1
2nW ≤ V , and choose

an embedding ρ : 1
2nW ↪→ V with image eV . Then 1

2n+1W ≤ V , so we can choose another embedding
ρ′ : 1

2n+1W ↪→ V with image e′V . We wish to show that 2nφ(e) = 2n+1φ(e′). We can factor 1
2nW as a direct

sum
1

2n
W ' 1

2n+1
W ⊕ 1

2n+1
W,

so that ρ determines a pair of mutually orthogonal embeddings

ρ−, ρ+ :
1

2n+1
W ↪→ V
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with images e−V , e+V , for some pair of mutually orthogonal projections e−, e+ ∈ A. The argument of the
preceding paragraph shows that

φ(e−) = φ(e′) = φ(e+),

so that
φ(e) = φ(e− + e+) = φ(e−) + φ(e+) = 2φ(e′),

as desired.
We now claim that the map d : R(A′)+ → R is additive. Let W and W ′ be finite representations of A′,

and choose an integer n such that 1
2nW + 1

2nW
′ ≤ V. Then we can find embeddings

ρ :
1

2n
W ↪→ V ρ′ :

1

2n
W ′ ↪→ V

with orthogonal images eV and e′V . The sum of these is an embedding of 1
2n (W +W ′) into V with image

(e+ e′)V . Then
d(W +W ′) = 2nφ(e+ e′) = 2nφ(e) + 2nφ(e′) = d(W ) + d(W ′).

Since d is an additive map from R(A)+ to the nonnegative real numbers, it extends uniquely to an order-
preserving map R(A) → R. Taking n = 0 and ρ : V → V to be the identity, we deduce that d(V ) = 1. It
follows that d must coincide with our function dim : R(A)→ R, which proves that φ(e) = d(eV ) = dim(eV )
for every projection e ∈ A.

Corollary 2. Let A be a factor. Then any finite trace φ : A→ C is automatically ultraweakly continuous.

Proof. Since A admits a faithful finite trace, it is automatically finite. In the next lecture we will prove
every finite von Neumann algebra is a product of von Neumann algebras which admit faithful, ultraweakly
continuous finite traces. Since A is a factor, we deduce that A admits an ultraweakly continuous trace φ′.
Proposition 1 shows that φ = φ′, so that φ is ultraweakly continuous.

Remark 3. The analogue of Corollary 2 fails if A is not a factor. Suppose that A is abelian. Then every
state on A is tracial. For any commutative C∗-algebra A, there is a one-to-one correspondence between
states on A and probability measures on X = SpecA (defined on the Σ-algebra of Baire sets). If A is a von
Neumann algebra, then we have seen that a state is ultraweakly continuous if and only if the corresponding
probability measure vanishes on all meager subsets of X.

Let A be a von Neumann algebra equipped with a faithful, ultraweakly continuous, finite trace φ. We
let L2(A) denote the Hilbert space completion of A with respect to the inner product (x, y) = φ(y∗x). The
left action of A on itself extends to an action of A on L2(A). Since φ is faithful, this gives an embedding
A→ B(L2(A)). We defer for the moment the proof of the following:

Proposition 4. In the situation above, the action of A on L2(A) by right multiplication induces an isomor-
phism Aop → A′, where A′ is the commutant of A in B(L2(A)).

Corollary 5. Let A be a finite factor. Then A has type I or II.

Proof. We will show in the next lecture that A admits a faithful ultraweakly continuous finite trace φ. Let
A′ denote the commutant of A in B(L2(A)). Then Proposition 4 gives an isomorphism Aop ' A′. Since A
is finite, L2(A) is finite when regarded as a representation of A′, so that A′ has type I or II. It follows that
Aop has type I or II, so that A has type I or II.

The converse of Corollary 5 is false: a factor of type I or II need not be finite. For example, if A = B(V )
is a type I factor, then A is finite if and only if V is finite dimensional. We next establish an analogous
result for type II factors.

First, we need a small digression on the classification of representations of type II factors. We have
seen that if A is a type II factor, then the set of isomorphism classes of finite representations of A can be
identified with R≥0. We now extend the picture to representations which are not finite.
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Lemma 6. Let A be a type II factor, let V be a nonzero finite representation of A, and let W be a
representation of A which is not finite. Then W is isomorphic to V ⊕I for some infinite set I.

Proof. Choose a maximal collection of isometric embeddings {ρα : V →W}α∈I having mutually orthogonal
images. The ρα induce an isometric embedding

f : V ⊕I →W.

Let W0 be the orthogonal complement of the image of this embedding. By maximality, there cannot exist
an isometric embedding of V into W0. Thus V � W0. Since A is a factor, we have W0 < V . In particular,
V factors as an orthogonal direct sum W0 ⊕W1. If V ⊕∞ denotes a direct sum of countably many copies of
V , we have

W0 ⊕ V ⊕∞ ' W0 ⊕ (W1 ⊕ V0)⊕ (W1 ⊕W0)⊕ · · ·
' (W0 ⊕W1)⊕ (W0 ⊕W1)⊕ · · ·
' V ⊕∞.

Since W ' V ⊕I ⊕W0 is not finite, the set I must be infinite. We conclude that

W ' V ⊕I ⊕W0 ' V ⊕I .

Construction 7. Let V be a Hilbert space and let I be a set. Every bounded operator from V ⊕I to itself
determines a matrix [Fi,j ]i,j∈I whose entries are bounded operators from V to itself. If A ⊆ B(V ) is a von
Neumann algebra, we let MI×I(A) denote the subalgebra B(V ⊕I) consisting of those elements whose matrix
coefficients belong to A. This is a von Neumann algebra: it can be realized as the commutant of the diagonal
action of A′ on V ⊕I .

Proposition 8. Let A be a type II factor. Then one of the following possibilities holds:

(1) A is finite (in this case, we say that A has type II1).

(2) There exists a finite type II factor B, an infinite set I, and an isomorphism A ' MI,I(B) (in this
case, we say that A has type II∞).

Proof. Since A is type II, it has a nonzero finite representation V . Let A′ denote the commutant of A in
B(V ). If V is finite when regarded as an A′-module, then A is finite and we are done. Assume otherwise.
The von Neumann algebra A′ is finite (since V is finite as a representation of A′′ = A), and therefore admits
an ultraweakly continuous finite trace φ. Let W = L2(A′) be the associated representation of A′. Then W
is a finite representation of A′. It follows that V ' W⊕I for some infinite set I. Then A is the commutant
of the diagonal action of A′ on W⊕I , which is given by MI×I(B), where B is the commutant of A′ in B(W ).
Using Proposition 4, we get an equivalence B ' A′op, which proves that B is finite.
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