Math 261y: von Neumann Algebras (Lecture 23)

October 28, 2011

Let A be a factor. In the last lecture, we associated to A a linearly ordered abelian group $R(A)$: the collection $R(A)_{+}$of nonnegative elements of $R(A)$ can be identified with the set of isomorphism classes of finite representations of A. Our first goal in this lecture is to determine the possible structures on $R(A)$. There are three cases to consider:
(a) The group $R(A)$ is trivial: that is, A has no nontrivial finite representations. In this case, we say that $R(A)$ is a type III factor.
(b) There exists a smallest positive element of $R(A)$. This element corresponds to a representation V. Let $W \subset V$ be a proper A-submodule. Since V is finite, we must have $W<V$. Since V is a least positive element of $R(A)$, we have $W \simeq 0$. This proves that V is irreducible, so that the von Neumann algebra A is type I.
(c) Suppose that $R(A)$ is nontrivial, but has no least positive element. Fix a positive element $V \in R(A)$. We define a map $\phi: R(A) \rightarrow \mathbb{R}$ as follows. Given $W \in R(A)$, let

$$
\mathbf{Q}_{\leq W}=\left\{\frac{p}{q}:(q>0) \wedge p V \leq q W\right\} \quad \mathbf{Q}_{<W}=\mathbf{Q}_{\leq W}=\left\{\frac{p}{q}:(q>0) \wedge p V<q W\right\}
$$

Since V is positive, the Archimedean property of $R(A)$ implies that

$$
-n V<W<n V
$$

for n sufficiently large. It follows that the sets $\mathbf{Q}_{<W}$ and $\mathbf{Q}_{\leq W}$ are nonempty and bounded above. Since they differ by at most a single rational number, they have the same supremum, which we will denote by $\phi(W)$. We have

$$
\begin{aligned}
-\phi(W) & =-\sup \mathbf{Q}_{\leq W} \\
& =\inf (-1) \mathbf{Q}_{\leq W} \\
& =\inf \left(\mathbf{Q} / \mathbf{Q}_{<-W}\right) \\
& =\sup \mathbf{Q}_{<-W} \\
& =\phi(-W) .
\end{aligned}
$$

It is clear that ϕ is monotone: if $W \leq W^{\prime}$, then $\mathbf{Q}_{\leq W} \subseteq \mathbf{Q}_{\leq W^{\prime}}$ so that $\phi(W) \leq \phi\left(W^{\prime}\right)$. We next show that ϕ is a group homomorphism. Let $W, W^{\prime} \in R(A)$. If $\frac{p}{q} \in \mathbf{Q}_{\leq W}$ and $\frac{p^{\prime}}{q^{\prime}} \in \mathbf{Q}_{\leq W^{\prime}}$, then we have

$$
p V \leq q W \quad p^{\prime} V \leq q^{\prime} W^{\prime}
$$

so

$$
\begin{gathered}
p q^{\prime} V \leq q q^{\prime} W \quad p^{\prime} q V \leq q q^{\prime} W^{\prime} \\
\left(p q^{\prime}+p^{\prime} q\right) V \leq q q^{\prime}\left(W+W^{\prime}\right)
\end{gathered}
$$

$$
\frac{p}{q}+\frac{p^{\prime}}{q^{\prime}} \in \mathbf{Q}_{\leq W+W^{\prime}}
$$

This proves that $\mathbf{Q}_{\leq W}+\mathbf{Q}_{\leq W^{\prime}} \subseteq \mathbf{Q}_{\leq W+W^{\prime}}$ so that $\phi(W)+\phi\left(W^{\prime}\right) \leq \phi\left(W+W^{\prime}\right)$. The reverse inequality then follows by applying the same arguments to $-W$ and $-W^{\prime}$.
We now claim that ϕ is injective. Assume otherwise; then there exists a positive element $W \in R(A)$ such that $\phi(W)=0$. Using the Archimedean property, we deduce that there exists an integer n such that $V<n W$. Then $\frac{1}{n} \in \mathbf{Q}_{W}$, contradicting the assumption that $\phi(W)=0$.
It remains to prove that ϕ is surjective. Let us denote the image of ϕ by $K \subseteq \mathbb{R}$. We wish to show that $K=\mathbb{R}$. Since K is a nontrivial subgroup of \mathbb{R} with no least element, it is dense in \mathbb{R}. It will therefore suffice to show that K is closed. Let $t \in \bar{K}$; we wish to show that $x \in K$. We can write t as the limit of a sequence of elements $t_{0}=t_{1}, t_{2}, \ldots \in K$ which is either increasing or decreasing; we will assume without loss of generality that the sequence is increasing. Then we can write $t_{i+1}-t_{i}=\phi\left(W_{i}\right)$ for some finite representations W_{i} of A. We will show that $W=\bigoplus W_{i}$ is a finite representation of A and that $x=t_{0}+\phi(W)$ belongs to K. To prove the second claim, it will suffice to show that $t_{0}+\phi(W) \geq r$ for every element $r \in K$ such that $r \geq x$. Writing $r-t_{0}=\phi(U)$, we are reduced to proving that $W \leq U$ (which simultaneously proves the finiteness of W).
Note that we have $\sum \phi\left(W_{i}\right) \leq \phi(U)$. In particular $\phi\left(W_{0}\right) \leq \phi(U)$, so there exists an embedding $f_{0}: W_{0} \hookrightarrow U$. Denote its orthogonal complement by U_{1}; then $\phi\left(W_{0}\right)+\phi\left(W_{1}\right) \leq \phi(U)$ implies that $W_{1} \leq U_{1}$ so we can choose an embedding $f_{1}: W_{1} \hookrightarrow U_{1} \subseteq U$. Proceeding in this way, we obtain a collection of embeddings $f_{i}: W_{i} \rightarrow U$ with mutually disjoint images, which gives an isometric embedding $\bigoplus W_{i} \hookrightarrow U$.

We say that a factor A is type $I I$ if the third case occurs: that is, if A has finite representations but no irreducible representations.

Definition 1. Let $A \subseteq B(V)$ be a von Neumann algebra with commutant A^{\prime}. We will say that A is finite if V is finite when regarded as an A^{\prime}-module.

Remark 2. In the situation of Definition 1, there is a bijective correspondence between closed A^{\prime}-submodules of V and projections in A. Moreover, if $e \in A$ is a projection, then an isomorphism of V with $e V$ (as A^{\prime} modules) can be identified with an operator $u \in A$ satisfying $u u^{*}=e, u^{*} u=1$. Note that the second condition implies that

$$
\left(u u^{*}\right)\left(u u^{*}=u u^{*},\right.
$$

so that $u u^{*}$ is automatically a projection. It follows that A is finite if and only if the following condition is satisfied:
(*) For every element $u \in A$ satisfying $u^{*} u=1$, we have $u^{*} u=1$.
In particular, this condition is intrinsic to A : it does not depend on the embedding $A \subseteq B(V)$.
We now study a mechanism for proving that a von Neumann algebra is finite.
Proposition 3. Let A be a von Neumann algebra and let $\phi: A \rightarrow \mathbf{C}$ be a state. The following conditions are equivalent:
(1) For every $x, y \in A$, we have $\phi(x y)=\phi(y x)$.
(2) For every Hermitian element $h \in A$ and every unitary element $u \in A$, we have $\phi\left(u h u^{-1}\right)=\phi(h)$.

Proof. To show that $(1) \Rightarrow(2)$, take $x=u h$ and $y=u^{-1}$. For the converse, suppose that (2) is satisfied. Then every element $h \in A$ satisfies $\phi\left(u h u^{-1}\right)=\phi(h)$ (since the Hermitian elements generate A as a \mathbf{C}-vector space). Taking $h=x u$, we obtain $\phi(u x)=\phi(x u)$ for each $x \in A$ and each unitary element $u \in A$. To prove (1), it suffices to show that A is the \mathbf{C}-linear span of its unitary elements. It suffices to prove that every

Hermitian element $y \in A$ belongs to this span. Replacing A by the abelian von Neumann algebra generated by y, we can reduce to the case where $A=L^{\infty}(X)$, in which case the desired result follows from elementary considerations.

Definition 4. Let A be a von Neumann algebra and let $\phi: A \rightarrow \mathbf{C}$ be a state. We say that ϕ is tracial if it satisfies the equivalent conditions of 3 . In this case, we also say that ϕ is a finite trace. We say that ϕ is faithful if, for every positive element $x \in A$, either $x=0$ or $\phi(x)>0$.

Proposition 5. Let A be a von Neumann algebra. If A admits a faithful finite trace, then A is finite.
Proof. Let $u \in A$ be a partial isometry satisfying $u^{*} u=1$; we wish to show that $u u^{*}=1$. Write $e=u u^{*}$. Then e is a projection, and we have $\phi(e)=\phi\left(u u^{*}\right)=\phi\left(u^{*} u\right)=\phi(1)$. Thus $\phi(1-e)=0$. Since $1-e$ is positive and ϕ is faithful, this implies that $1-e=0$, so that $e=u u^{*}=1$ as desired.

We have the following converse:
Theorem 6. Let A be a finite von Neumann algebra. Then A can be written as a (von Neumann algebra) product $\prod A_{\alpha}$, where each A_{α} admits a faithful finite trace which is ultraweakly continuous.

Remark 7. From the characterization given in Remark 2, it is easy to see that a product of finite von Neumann algebras is itself finite. Thus the criterion of Theorem 6 is both necessary and sufficient.

Remark 8. If A is a factor, then one can prove that every tracial state is automatically ultraweakly continuous. We will not use this fact.

Here is a rough idea of why Theorem 6 should be true. Assume for simplicity that $A \subseteq B(V)$ is a factor, so that V is finite when regarded as a representation of A^{\prime}. There is a unique order-preserving isomorphism $\rho: R\left(A^{\prime}\right) \rightarrow \mathbb{R}$ such that $\rho(V)=1$. We can think of ρ as a function which assigns a "dimension" to each finite representation of A^{\prime}. In particular, if $e \in A$ is a projection, then $e V$ is a closed A^{\prime}-submodule of V, hence finite as a representation of A^{\prime}. It therefore has a well-defined dimension $\rho(e A)$. We would like to define a tracial state $\phi: A \rightarrow \mathbf{C}$ by the formula

$$
\phi(e)=\rho(e A)
$$

Unfortunately, this formula only makes sense when e is a projection: to get a state, we need to define ϕ on arbitrary elements of A. However, since A is generated by its projections, any (ultraweakly continuous) state ϕ is determined by its restriction to the projections. We might then hope to show that the above prescription extends uniquely to a state $\phi: A \rightarrow \mathbf{C}$. We postpone giving a real proof for the moment; we will return to the matter next week.

Let's explore some of the consequences of having a faithful finite trace. Recall that for any state $\phi: A \rightarrow$ \mathbf{C}, we can associate an inner product on A, given by $(x, y)=\phi\left(y^{*} x\right)$. We then have

$$
(z x, y)=\phi\left(y^{*} z x\right)=\phi\left(\left(z^{*} y\right)^{*} x\right)=\left(x, z^{*} y\right)
$$

In other words, the action of A on itself by left multiplication is a $*$-homomorphism. However, it is not at all obvious that the same is true for right multiplication: we have

$$
(x z, y)=\phi\left(y^{*} x z\right) \quad\left(x, y z^{*}\right)=\phi\left(z y^{*} x\right)
$$

To say that these expressions are the same (for all x, y, and z) is to say that the right action of A on itself is via $*$-homomorphisms. If we let V_{ϕ} denote the Hilbert space completion of A with respect to the inner product (,), this implies that the right action of A on itself extends to a right action of A on V_{ϕ} (note that if $z \in A$ has norm ≤ 1, then we can write $1=z^{*} z+z^{\prime *} z^{\prime}$ for some $z^{\prime} \in A$. If we let r_{z} and $r_{z^{\prime}}$ denote right multiplication by z and z^{\prime}, we get $r_{z}^{*} r_{z}+r_{z^{\prime}}^{*} r_{z}=1$, which forces r_{z} to have operator norm ≤ 1).

Proposition 9. Let A be a von Neumann algebra, let $\phi: A \rightarrow \mathbf{C}$ be a faithful finite trace whichi is ultraweakly continuous, and let V_{ϕ} denote the Hilbert space associated to ϕ. The left action of A on itself induces an embedding $\rho: A \hookrightarrow B\left(V_{\phi}\right)$. Let A^{\prime} denote its commutant. Then the right action of A on V_{ϕ} induces an isomorphism $\rho^{\prime}: A^{o p} \rightarrow A^{\prime}$.

We will give the proof of this (and deduce some consequences) in the next lecture.

