
Math 261y: von Neumann Algebras (Lecture 23)

October 28, 2011

Let A be a factor. In the last lecture, we associated to A a linearly ordered abelian group R(A): the
collection R(A)+ of nonnegative elements of R(A) can be identified with the set of isomorphism classes of
finite representations of A. Our first goal in this lecture is to determine the possible structures on R(A).
There are three cases to consider:

(a) The group R(A) is trivial: that is, A has no nontrivial finite representations. In this case, we say that
R(A) is a type III factor.

(b) There exists a smallest positive element of R(A). This element corresponds to a representation V . Let
W ⊂ V be a proper A-submodule. Since V is finite, we must have W < V . Since V is a least positive
element of R(A), we have W ' 0. This proves that V is irreducible, so that the von Neumann algebra
A is type I.

(c) Suppose that R(A) is nontrivial, but has no least positive element. Fix a positive element V ∈ R(A).
We define a map φ : R(A)→ R as follows. Given W ∈ R(A), let

Q≤W = {p
q

: (q > 0) ∧ pV ≤ qW} Q<W = Q≤W = {p
q

: (q > 0) ∧ pV < qW}.

Since V is positive, the Archimedean property of R(A) implies that

−nV < W < nV

for n sufficiently large. It follows that the sets Q<W and Q≤W are nonempty and bounded above.
Since they differ by at most a single rational number, they have the same supremum, which we will
denote by φ(W ). We have

−φ(W ) = − sup Q≤W

= inf(−1) Q≤W

= inf(Q /Q<−W )

= sup Q<−W

= φ(−W ).

It is clear that φ is monotone: if W ≤W ′, then Q≤W ⊆ Q≤W ′ so that φ(W ) ≤ φ(W ′). We next show

that φ is a group homomorphism. Let W,W ′ ∈ R(A). If p
q ∈ Q≤W and p′

q′ ∈ Q≤W ′ , then we have

pV ≤ qW p′V ≤ q′W ′

so
pq′V ≤ qq′W p′qV ≤ qq′W ′

(pq′ + p′q)V ≤ qq′(W +W ′)
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p

q
+
p′

q′
∈ Q≤W+W ′ .

This proves that Q≤W + Q≤W ′ ⊆ Q≤W+W ′ so that φ(W )+φ(W ′) ≤ φ(W+W ′). The reverse inequality
then follows by applying the same arguments to −W and −W ′.
We now claim that φ is injective. Assume otherwise; then there exists a positive element W ∈ R(A)
such that φ(W ) = 0. Using the Archimedean property, we deduce that there exists an integer n such
that V < nW . Then 1

n ∈ QW , contradicting the assumption that φ(W ) = 0.

It remains to prove that φ is surjective. Let us denote the image of φ by K ⊆ R. We wish to show that
K = R. Since K is a nontrivial subgroup of R with no least element, it is dense in R. It will therefore
suffice to show that K is closed. Let t ∈ K; we wish to show that x ∈ K. We can write t as the limit
of a sequence of elements t0 = t1, t2, . . . ∈ K which is either increasing or decreasing; we will assume
without loss of generality that the sequence is increasing. Then we can write ti+1−ti = φ(Wi) for some
finite representations Wi of A. We will show that W =

⊕
Wi is a finite representation of A and that

x = t0 + φ(W ) belongs to K. To prove the second claim, it will suffice to show that t0 + φ(W ) ≥ r for
every element r ∈ K such that r ≥ x. Writing r − t0 = φ(U), we are reduced to proving that W ≤ U
(which simultaneously proves the finiteness of W ).

Note that we have
∑
φ(Wi) ≤ φ(U). In particular φ(W0) ≤ φ(U), so there exists an embedding

f0 : W0 ↪→ U . Denote its orthogonal complement by U1; then φ(W0) + φ(W1) ≤ φ(U) implies that
W1 ≤ U1 so we can choose an embedding f1 : W1 ↪→ U1 ⊆ U . Proceeding in this way, we obtain
a collection of embeddings fi : Wi → U with mutually disjoint images, which gives an isometric
embedding

⊕
Wi ↪→ U .

We say that a factor A is type II if the third case occurs: that is, if A has finite representations but no
irreducible representations.

Definition 1. Let A ⊆ B(V ) be a von Neumann algebra with commutant A′. We will say that A is finite
if V is finite when regarded as an A′-module.

Remark 2. In the situation of Definition 1, there is a bijective correspondence between closed A′-submodules
of V and projections in A. Moreover, if e ∈ A is a projection, then an isomorphism of V with eV (as A′-
modules) can be identified with an operator u ∈ A satisfying uu∗ = e, u∗u = 1. Note that the second
condition implies that

(uu∗)(uu∗ = uu∗,

so that uu∗ is automatically a projection. It follows that A is finite if and only if the following condition is
satisfied:

(∗) For every element u ∈ A satisfying u∗u = 1, we have u∗u = 1.

In particular, this condition is intrinsic to A: it does not depend on the embedding A ⊆ B(V ).

We now study a mechanism for proving that a von Neumann algebra is finite.

Proposition 3. Let A be a von Neumann algebra and let φ : A → C be a state. The following conditions
are equivalent:

(1) For every x, y ∈ A, we have φ(xy) = φ(yx).

(2) For every Hermitian element h ∈ A and every unitary element u ∈ A, we have φ(uhu−1) = φ(h).

Proof. To show that (1) ⇒ (2), take x = uh and y = u−1. For the converse, suppose that (2) is satisfied.
Then every element h ∈ A satisfies φ(uhu−1) = φ(h) (since the Hermitian elements generate A as a C-vector
space). Taking h = xu, we obtain φ(ux) = φ(xu) for each x ∈ A and each unitary element u ∈ A. To prove
(1), it suffices to show that A is the C-linear span of its unitary elements. It suffices to prove that every
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Hermitian element y ∈ A belongs to this span. Replacing A by the abelian von Neumann algebra generated
by y, we can reduce to the case where A = L∞(X), in which case the desired result follows from elementary
considerations.

Definition 4. Let A be a von Neumann algebra and let φ : A → C be a state. We say that φ is tracial if
it satisfies the equivalent conditions of 3. In this case, we also say that φ is a finite trace. We say that φ is
faithful if, for every positive element x ∈ A, either x = 0 or φ(x) > 0.

Proposition 5. Let A be a von Neumann algebra. If A admits a faithful finite trace, then A is finite.

Proof. Let u ∈ A be a partial isometry satisfying u∗u = 1; we wish to show that uu∗ = 1. Write e = uu∗.
Then e is a projection, and we have φ(e) = φ(uu∗) = φ(u∗u) = φ(1). Thus φ(1 − e) = 0. Since 1 − e is
positive and φ is faithful, this implies that 1− e = 0, so that e = uu∗ = 1 as desired.

We have the following converse:

Theorem 6. Let A be a finite von Neumann algebra. Then A can be written as a (von Neumann algebra)
product

∏
Aα, where each Aα admits a faithful finite trace which is ultraweakly continuous.

Remark 7. From the characterization given in Remark 2, it is easy to see that a product of finite von
Neumann algebras is itself finite. Thus the criterion of Theorem 6 is both necessary and sufficient.

Remark 8. If A is a factor, then one can prove that every tracial state is automatically ultraweakly
continuous. We will not use this fact.

Here is a rough idea of why Theorem 6 should be true. Assume for simplicity that A ⊆ B(V ) is a factor,
so that V is finite when regarded as a representation of A′. There is a unique order-preserving isomorphism
ρ : R(A′) → R such that ρ(V ) = 1. We can think of ρ as a function which assigns a “dimension” to each
finite representation of A′. In particular, if e ∈ A is a projection, then eV is a closed A′-submodule of V ,
hence finite as a representation of A′. It therefore has a well-defined dimension ρ(eA). We would like to
define a tracial state φ : A→ C by the formula

φ(e) = ρ(eA).

Unfortunately, this formula only makes sense when e is a projection: to get a state, we need to define φ
on arbitrary elements of A. However, since A is generated by its projections, any (ultraweakly continuous)
state φ is determined by its restriction to the projections. We might then hope to show that the above
prescription extends uniquely to a state φ : A → C. We postpone giving a real proof for the moment; we
will return to the matter next week.

Let’s explore some of the consequences of having a faithful finite trace. Recall that for any state φ : A→
C, we can associate an inner product on A, given by (x, y) = φ(y∗x). We then have

(zx, y) = φ(y∗zx) = φ((z∗y)∗x) = (x, z∗y).

In other words, the action of A on itself by left multiplication is a ∗-homomorphism. However, it is not at
all obvious that the same is true for right multiplication: we have

(xz, y) = φ(y∗xz) (x, yz∗) = φ(zy∗x).

To say that these expressions are the same (for all x, y, and z) is to say that the right action of A on itself
is via ∗-homomorphisms. If we let Vφ denote the Hilbert space completion of A with respect to the inner
product (, ), this implies that the right action of A on itself extends to a right action of A on Vφ (note that
if z ∈ A has norm ≤ 1, then we can write 1 = z∗z + z′∗z′ for some z′ ∈ A. If we let rz and rz′ denote right
multiplication by z and z′, we get r∗zrz + r∗z′rz = 1, which forces rz to have operator norm ≤ 1).
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Proposition 9. Let A be a von Neumann algebra, let φ : A→ C be a faithful finite trace whichi is ultraweakly
continuous, and let Vφ denote the Hilbert space associated to φ. The left action of A on itself induces an
embedding ρ : A ↪→ B(Vφ). Let A′ denote its commutant. Then the right action of A on Vφ induces an
isomorphism ρ′ : Aop → A′.

We will give the proof of this (and deduce some consequences) in the next lecture.
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