Math 261y: von Neumann Algebras (Lecture 22)

October 24, 2011

Fix a von Neumann algebra A. In this lecture, we will study the category $\operatorname{Rep}(A)$ of (ultraweakly continuous) representations of A. Given a pair of representations V and W, we will write $V \leq W$ if V appears as an (orthogonal) direct summand of W. This relation is evidently reflexive and transitive. It also enjoys the following assymmetry property:

Proposition 1. Let V and W be representations of a von Neumann algebra A. If $V \leq W$ and $W \leq V$, then $V \simeq W$.

Proof. Since $W \leq V$, we can identify W with a closed subspace of V. The assumption that $V \leq W$ implies that there exists an isometric A-linear embedding $f: V \rightarrow W$. Set $V_{0}=V, V_{1}=W$, and $V_{i}=f\left(V_{i-2}\right)$ for $i \geq 2$. Then

$$
V_{0} \supseteq V_{1} \supseteq V_{2} \supseteq \cdots
$$

Let U_{i} denote the orthogonal complement of V_{i+1} in V_{i}, so that the U_{i} are mutually orthogonal subspaces of V. Let $V_{\infty}=\bigcap V_{i}$, so that V_{∞} is the orthogonal complement of $\bigoplus U_{i}$. Then we can recover V as the direct sum of V_{∞} with $\bigoplus_{i \geq 0} U_{i}$, and W as the direct sum of V_{∞} with $\bigoplus_{i \geq 1} U_{i}$. It will therefore suffice to show that

$$
\bigoplus_{i \geq 0} U_{i} \simeq \bigoplus_{i \geq 1} U_{i}
$$

This is clear, since the map f induces isomorphisms $U_{i} \rightarrow U_{i+2}$ for each i.
By virtue of Proposition 1, we can regard the collection of isomorphism classes of representations of A as partially ordered via \leq.

Remark 2. Let V and W be representations of a von Neumann algebra A. Suppose there exists a bounded A-linear map $f: V \rightarrow W$ which is injective (but not necessarily an isometry). We can then endow V with a new inner product, given by the inner product on W. This inner product has the form $(v, H w)$ for some positive operator $H \in B(V)$. Since f commutes with the action of A, the operator H commutes with the action of A. It follows that f factors as a composition

$$
V \xrightarrow{\sqrt{H}} V \xrightarrow{u} W
$$

where u is an isometry, so that $V \leq W$.
Proposition 3. Let A be a von Neumann algebra. The following conditions are equivalent:
(1) A is a factor.
(2) Every nonzero representation of A is faithful.
(3) The partial ordering \leq on isomorphism classes of objects of $\operatorname{Rep}(A)$ is a linear ordering.

Proof. If V is a nonzero representation of A, then the kernel of the map $A \rightarrow B(V)$ is an ultraweakly closed two-sided ideal of A, hence of the form $e A$ for some central projection $e \in A$. If A is a factor, we conclude that either $e=0$ (in which case V is faithful) or $e=1$ (in which case $V=0$). This proves that (1) \Rightarrow (2).

We next show that $(3) \Rightarrow(1)$. Suppose that A is not a factor. Then there exists a central projection $e \in A$ such that $e \notin\{0,1\}$. Let V be a faithful representation of A, so that V factors as an orthogonal direct sum $e V \oplus(1-e) V$. Since e vanishes on $(1-e) V$ and acts by the identity on $e V$, we cannot have $e V \leq(1-e) V$ or $(1-e) V \leq e V$.

We complete the proof by showing that $(2) \Rightarrow(3)$. Let V and W be representations of A. Let X be the set of all triples $\left(V_{0}, W_{0}, \phi\right)$ where V_{0} is a closed submodule of V, W_{0} is a closed submodule of W, and ϕ is an isometric A-linear isomorphism of V_{0} with W_{0}. Let us say that a pair of elements $\left(V_{0}, W_{0}, \phi\right)$ and ($\left.V_{1}, W_{1}, \psi\right)$ are orthogonal if $V_{0} \perp V_{1}$ and $W_{0} \perp W_{1}$. Using Zorn's lemma, we deduce that there exists a maximal collection of mutually orthogonal elements $S=\left\{\left(V_{\alpha}, W_{\alpha}, \phi_{\alpha}\right)\right\}$ of X. Let V^{\prime} denote the orthogonal complement of the sum $\bigoplus V_{\alpha} \subseteq V$ and W^{\prime} the orthogonal complement of the sum $\bigoplus W_{\alpha} \subseteq W$. If $V^{\prime}=0$, then the maps ϕ_{α} determine an isometric embedding of V into W, so that $V \leq W$. Similarly, if $W^{\prime}=0$, then $W \leq V$. Let us therefore assume that $V^{\prime}, W^{\prime} \neq 0$. Assumption (2) implies that V^{\prime} is a faithful representation of A. It follows that every representation of A (and in particular W^{\prime}) can be written as a direct summand of a direct sum of copies of V^{\prime}. In particular, there exists a nonzero map $\rho: V^{\prime} \rightarrow W^{\prime}$, hence an injection $\operatorname{ker}(\rho)^{\perp} \hookrightarrow W^{\prime}$. Using Remark 2 we obtain $\operatorname{ker}(\rho)^{\perp} \leq W^{\prime}$, so there exists a submodule $W_{0}^{\prime} \subseteq W$ and an isomorphism $\phi: \operatorname{ker}(\rho)^{\perp} \rightarrow W_{0}^{\prime}$. This contradicts the maximality of S.

Definition 4. Let A be a von Neumann algebra and let V be a representation of A. We will say that V is irreducible if $V \neq 0$ and for every closed A-submodule $W \subseteq V$, we have either $W=0$ or $W=V$. We will say that V is finite if, for every closed A-submodule $W \subseteq V$ which is isometrically isomorphic to V (as a repersentation of A), we have $W=V$.

Warning 5. The terminology of Definition 4 may be nonstandard. The standard terminology is to refer to a projection $p \in A \subseteq B(V)$ as finite if the subspace $p V \subseteq V$ is finite when regarded as a representation of A^{\prime}.

Let V be a representation of A, and let A^{\prime} denote the commutant of the image of A in $B(V)$. Then there is a bijective correspondence between projections in A^{\prime} and closed A-submodules of V. Since A^{\prime} is generated by the projections contained in A^{\prime}, we see that V is irreducible if and only if $A^{\prime} \simeq \mathbf{C}$. From this we conclude:

Proposition 6. Let A be a von Neumann algebra. Then A is a type I factor if and only if A has a faithful irreducible representation. If A is a factor, then A is type I if and only if it has an irreducible representation.

Let us now study the class of finite representations.
Example 7. Let A be a type I factor. Then $\operatorname{Rep}(A)$ is equivalent to the category of Hilbert spaces. It follows that a representation V of A is finite if and only if it can be written as a direct sum of finitely many irreducible representations of A.

Proposition 8. Let A be a von Neumann algebra and let V be a representation of A. If V is finite, then any closed A-submodule of V is finite.
Proof. Let $W \subseteq V$ be a closed A-submodule and suppose that W is isomorphic to W^{\prime}, for some closed A-submodule $\bar{W}^{\prime} \subseteq W$. Then $V=W \oplus W^{\perp}$ is isomorphic to $W^{\prime} \oplus W^{\perp}$. Since V is finite, we conclude that $V=W^{\prime} \oplus W^{\perp}$, so that $W^{\prime}=W$.

Proposition 9. Let A be a factor, and let V and W be finite representations of A. Then the direct sum $V \oplus W$ is finite.

Lemma 10. Let A be a von Neumann algebra and let V be a representation of A. If V is infinite, then there exists a pair of closed A-submodules $U, U^{\prime} \subseteq A$ which are infinite and orthogonal to one another.

Proof. Since V is infinite, there exists an A-linear isometry f from V to a proper submodule of itself. For $n \geq 0$, set $V_{n}=f^{n}(V)$, so that

$$
V=V_{0} \supset V_{1} \supset V_{2} \supset \cdots
$$

Let W_{i} denote the orthogonal complement of V_{i+1} in V_{i}. Then f induces isometric isomorphisms $W_{i} \rightarrow W_{i+1}$. Take $U=\bigoplus_{k} W_{2 k}$ and $U^{\prime}=\bigoplus_{k} W_{2 k+1}$. Then f^{2} induces isomorphisms from U and U^{\prime} to proper submodules of themselves (so that U and U^{\prime} are infinite).

Proof of Proposition 9. Assume that V and W are finite, and suppose that $V \oplus W$ is infinite. Then there exist closed A-submodules $U, U^{\prime} \subseteq V \oplus W$ which are orthogonal and infinite. According to Proposition 3, we have either $V \cap U \leq W \cap U^{\prime}$ or $W \cap U^{\prime} \leq V \cap U$. Without loss of generality, we may assume that $V \cap U \leq W \cap U^{\prime}$. Then

$$
U=(V \cap U) \oplus\left(U \cap(U \cap V)^{\perp}\right)
$$

Let W^{\prime} denote the image of $U \cap(U \cap V)^{\perp}$ in W, so that $U \cap\left((U \cap V)^{\perp} \leq W^{\prime}\right.$ by virtue of Remark 2 . We therefore get

$$
U \leq\left(W \cap U^{\prime}\right) \oplus W^{\prime}
$$

Since U^{\prime} is orthogonal to $U, W \cap U^{\prime}$ is orthogonal to W^{\prime}, so the right hand side can be identified with a closed subspace of W. Since W is finite, Proposition 8 implies that U is finite, contradicting our assumption that U is infinite.

Let A be a factor. We let $R_{+}(A)$ denote the collection of all isomorphism classes of finite representations of A. The construction

$$
V, W \mapsto V \oplus W
$$

endows $R_{+}(A)$ with the structure of a commutative monoid under addition.
Proposition 11. Let A be a factor. Then the monoid $R_{+}(A)$ is cancellative. That is, U, V, and W are finite representations of A and $U \oplus W \simeq V \oplus W$, then $U \simeq V$.

Proof. Without loss of generality, we may assume that $U \leq V$, so that $V \simeq K \oplus U$ for some $K \in \operatorname{Rep}(A)$.Then

$$
V \oplus W \simeq K \oplus U \oplus W \simeq K \oplus(V \oplus W)
$$

Since $V \oplus W$ is finite (Proposition 9), we conclude that $K \simeq 0$, so that $U \simeq V$.
If A is a factor, let $R(A)$ denote the group obtained from $R_{+}(A)$ by formally adjoining inverses. It follows from Proposition 11 that the map $R_{+}(A) \rightarrow R(A)$ is injective. We will identify $R(A)$ with its image in $R_{+}(A)$.

Proposition 12. Let A be a factor. Then $R(A)=R_{+}(A) \cup-R_{+}(A)$. Moreover, the intersection of $R_{+}(A)$ with $-R_{+}(A)$ consists only of the zero element (corresponding to the trivial representation of A). Consequently, $R(A)$ inherits the structure of a linearly ordered abelian group A, where $x \leq y$ if and only if $y-x \in R_{+}(A)$.

Proof. If $x, y \in R_{+}(A)$ with $x+y=0$, then x and y are both zero (since a direct sum of representations is zero if and only if each summand is zero). Note that an arbitrary element of $R(A)$ can be written as a difference $x-y$, where $x, y \in R_{+}(A)$. Then x and y are equivalence classes of representations $V, W \in \operatorname{Rep}(A)$. We have either $V \leq W$ or $W \leq V$. Assume without loss of generality that $W \leq V$. Then $V \simeq W \oplus W^{\prime}$, so $x=y+y^{\prime}$ in $R_{+}(A)$ and therefore $x-y=y^{\prime} \in R_{+}(A)$.

Remark 13. When restricted to the subset $R_{+}(A) \subseteq R(A)$, the linear ordering of Proposition 12 agrees with the linear ordering on representations introduced at the beginning of this lecture.

Proposition 14. Let A be a factor. Then the linearly ordered abelian group $R(A)$ is Archimedean. That is, if x and y are positive elements of $R(A)$, then $x<n y$ for $n \gg 0$.

Proof. The elements x and y correspond to isomorphism classes of finite representations $V, W \in \operatorname{Rep}(A)$. Suppose for a contradiction that we have $n y \leq x$ for every integer n. Taking $n=1$, we obtain an isometric embedding $f_{1}: V \rightarrow W$. Let W_{1} be the orthogonal complement of the image of f_{1}. Then W_{1} represents $x-y \in R(A)$. Taking $n=2$, we get $y \leq x-y$, so there exists an isometric embedding $f_{2}: V \rightarrow W_{1} \subseteq W$ Continuing in this way, we obtain an infinite collection of isometric embeddings $f_{i}: V \rightarrow W$ with mutually orthogonal images. It follows that $V^{\oplus \infty}$ appears as a direct summand of W. Since $V \neq 0, V^{\oplus \infty}$ is infinite, so that W is infinite, contrary to our assumptions.

Recall that if G is a linearly ordered abelian group satisfying the Archimedean property, then there exists an order-preserving embedding $G \hookrightarrow \mathbb{R}$. In particular, we obtain an embedding $R(A) \hookrightarrow \mathbb{R}$.

We will prove the following result in the next lecture:
Proposition 15. Let A be a factor. Then exactly one of the following conditions holds:
(a) The group $R(A)$ is isomorphic (as a linearly ordered group) to \mathbf{Z}.
(b) The group $R(A)$ is isomorphic (as a linearly ordered group) to \mathbb{R}.
(c) The group $R(A)$ is trivial.

Remark 16. The group $R(A)$ is isomorphic to \mathbf{Z} if and only if there is a smallest positive element of $R(A)$. The existence of such an element is equivalent to the existence of an irreducible representation of A. Consequently, case (a) of Proposition 15 applies precisely when A is a type I factor.

Definition 17. Let A be a factor. We say that A is type $I I$ if case (b) of Proposition 15 holds, and type III if case (c) of Proposition 15 holds. That is, A is type $I I$ if it has finite representations but no irreducible representations, and type $I I I$ if it has no finite representations.

