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October 24, 2011

Fix a von Neumann algebra A. In this lecture, we will study the category Rep(A) of (ultraweakly
continuous) representations of A. Given a pair of representations V and W , we will write V ≤ W if V
appears as an (orthogonal) direct summand of W . This relation is evidently reflexive and transitive. It also
enjoys the following assymmetry property:

Proposition 1. Let V and W be representations of a von Neumann algebra A. If V ≤ W and W ≤ V ,
then V 'W .

Proof. Since W ≤ V , we can identify W with a closed subspace of V . The assumption that V ≤W implies
that there exists an isometric A-linear embedding f : V → W . Set V0 = V , V1 = W , and Vi = f(Vi−2) for
i ≥ 2. Then

V0 ⊇ V1 ⊇ V2 ⊇ · · ·

Let Ui denote the orthogonal complement of Vi+1 in Vi, so that the Ui are mutually orthogonal subspaces of
V . Let V∞ =

⋂
Vi, so that V∞ is the orthogonal complement of

⊕
Ui. Then we can recover V as the direct

sum of V∞ with
⊕

i≥0 Ui, and W as the direct sum of V∞ with
⊕

i≥1 Ui. It will therefore suffice to show
that ⊕

i≥0

Ui '
⊕
i≥1

Ui.

This is clear, since the map f induces isomorphisms Ui → Ui+2 for each i.

By virtue of Proposition 1, we can regard the collection of isomorphism classes of representations of A
as partially ordered via ≤.

Remark 2. Let V and W be representations of a von Neumann algebra A. Suppose there exists a bounded
A-linear map f : V → W which is injective (but not necessarily an isometry). We can then endow V with
a new inner product, given by the inner product on W . This inner product has the form (v,Hw) for some
positive operator H ∈ B(V ). Since f commutes with the action of A, the operator H commutes with the
action of A. It follows that f factors as a composition

V
√
H→ V

u→W

where u is an isometry, so that V ≤W .

Proposition 3. Let A be a von Neumann algebra. The following conditions are equivalent:

(1) A is a factor.

(2) Every nonzero representation of A is faithful.

(3) The partial ordering ≤ on isomorphism classes of objects of Rep(A) is a linear ordering.
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Proof. If V is a nonzero representation of A, then the kernel of the map A→ B(V ) is an ultraweakly closed
two-sided ideal of A, hence of the form eA for some central projection e ∈ A. If A is a factor, we conclude
that either e = 0 (in which case V is faithful) or e = 1 (in which case V = 0). This proves that (1)⇒ (2).

We next show that (3) ⇒ (1). Suppose that A is not a factor. Then there exists a central projection
e ∈ A such that e /∈ {0, 1}. Let V be a faithful representation of A, so that V factors as an orthogonal
direct sum eV ⊕ (1 − e)V . Since e vanishes on (1 − e)V and acts by the identity on eV , we cannot have
eV ≤ (1− e)V or (1− e)V ≤ eV .

We complete the proof by showing that (2) ⇒ (3). Let V and W be representations of A. Let X be
the set of all triples (V0,W0, φ) where V0 is a closed submodule of V , W0 is a closed submodule of W , and
φ is an isometric A-linear isomorphism of V0 with W0. Let us say that a pair of elements (V0,W0, φ) and
(V1,W1, ψ) are orthogonal if V0 ⊥ V1 and W0 ⊥ W1. Using Zorn’s lemma, we deduce that there exists a
maximal collection of mutually orthogonal elements S = {(Vα,Wα, φα)} of X. Let V ′ denote the orthogonal
complement of the sum

⊕
Vα ⊆ V and W ′ the orthogonal complement of the sum

⊕
Wα ⊆ W . If V ′ = 0,

then the maps φα determine an isometric embedding of V into W , so that V ≤W . Similarly, if W ′ = 0, then
W ≤ V . Let us therefore assume that V ′,W ′ 6= 0. Assumption (2) implies that V ′ is a faithful representation
of A. It follows that every representation of A (and in particular W ′) can be written as a direct summand
of a direct sum of copies of V ′. In particular, there exists a nonzero map ρ : V ′ → W ′, hence an injection
ker(ρ)⊥ ↪→ W ′. Using Remark 2 we obtain ker(ρ)⊥ ≤ W ′, so there exists a submodule W ′0 ⊆ W and an
isomorphism φ : ker(ρ)⊥ →W ′0. This contradicts the maximality of S.

Definition 4. Let A be a von Neumann algebra and let V be a representation of A. We will say that V is
irreducible if V 6= 0 and for every closed A-submodule W ⊆ V , we have either W = 0 or W = V . We will
say that V is finite if, for every closed A-submodule W ⊆ V which is isometrically isomorphic to V (as a
repersentation of A), we have W = V .

Warning 5. The terminology of Definition 4 may be nonstandard. The standard terminology is to refer to
a projection p ∈ A ⊆ B(V ) as finite if the subspace pV ⊆ V is finite when regarded as a representation of
A′.

Let V be a representation of A, and let A′ denote the commutant of the image of A in B(V ). Then there
is a bijective correspondence between projections in A′ and closed A-submodules of V . Since A′ is generated
by the projections contained in A′, we see that V is irreducible if and only if A′ ' C. From this we conclude:

Proposition 6. Let A be a von Neumann algebra. Then A is a type I factor if and only if A has a faithful
irreducible representation. If A is a factor, then A is type I if and only if it has an irreducible representation.

Let us now study the class of finite representations.

Example 7. Let A be a type I factor. Then Rep(A) is equivalent to the category of Hilbert spaces. It
follows that a representation V of A is finite if and only if it can be written as a direct sum of finitely many
irreducible representations of A.

Proposition 8. Let A be a von Neumann algebra and let V be a representation of A. If V is finite, then
any closed A-submodule of V is finite.

Proof. Let W ⊆ V be a closed A-submodule and suppose that W is isomorphic to W ′, for some closed
A-submodule W ′ ⊆W . Then V = W ⊕W⊥ is isomorphic to W ′ ⊕W⊥. Since V is finite, we conclude that
V = W ′ ⊕W⊥, so that W ′ = W .

Proposition 9. Let A be a factor, and let V and W be finite representations of A. Then the direct sum
V ⊕W is finite.

Lemma 10. Let A be a von Neumann algebra and let V be a representation of A. If V is infinite, then
there exists a pair of closed A-submodules U,U ′ ⊆ A which are infinite and orthogonal to one another.
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Proof. Since V is infinite, there exists an A-linear isometry f from V to a proper submodule of itself. For
n ≥ 0, set Vn = fn(V ), so that

V = V0 ⊃ V1 ⊃ V2 ⊃ · · ·

Let Wi denote the orthogonal complement of Vi+1 in Vi. Then f induces isometric isomorphisms Wi →Wi+1.
Take U =

⊕
kW2k and U ′ =

⊕
kW2k+1. Then f2 induces isomorphisms from U and U ′ to proper submodules

of themselves (so that U and U ′ are infinite).

Proof of Proposition 9. Assume that V and W are finite, and suppose that V ⊕W is infinite. Then there
exist closed A-submodules U,U ′ ⊆ V ⊕W which are orthogonal and infinite. According to Proposition 3,
we have either V ∩ U ≤ W ∩ U ′ or W ∩ U ′ ≤ V ∩ U . Without loss of generality, we may assume that
V ∩ U ≤W ∩ U ′. Then

U = (V ∩ U)⊕ (U ∩ (U ∩ V )⊥).

Let W ′ denote the image of U ∩ (U ∩ V )⊥ in W , so that U ∩ ((U ∩ V )⊥ ≤ W ′ by virtue of Remark 2. We
therefore get

U ≤ (W ∩ U ′)⊕W ′.

Since U ′ is orthogonal to U , W ∩ U ′ is orthogonal to W ′, so the right hand side can be identified with a
closed subspace of W . Since W is finite, Proposition 8 implies that U is finite, contradicting our assumption
that U is infinite.

Let A be a factor. We let R+(A) denote the collection of all isomorphism classes of finite representations
of A. The construction

V,W 7→ V ⊕W

endows R+(A) with the structure of a commutative monoid under addition.

Proposition 11. Let A be a factor. Then the monoid R+(A) is cancellative. That is, U , V , and W are
finite representations of A and U ⊕W ' V ⊕W , then U ' V .

Proof. Without loss of generality, we may assume that U ≤ V , so that V ' K⊕U for some K ∈ Rep(A).Then

V ⊕W ' K ⊕ U ⊕W ' K ⊕ (V ⊕W ).

Since V ⊕W is finite (Proposition 9), we conclude that K ' 0, so that U ' V .

If A is a factor, let R(A) denote the group obtained from R+(A) by formally adjoining inverses. It
follows from Proposition 11 that the map R+(A)→ R(A) is injective. We will identify R(A) with its image
in R+(A).

Proposition 12. Let A be a factor. Then R(A) = R+(A) ∪ −R+(A). Moreover, the intersection of
R+(A) with −R+(A) consists only of the zero element (corresponding to the trivial representation of A).
Consequently, R(A) inherits the structure of a linearly ordered abelian group A, where x ≤ y if and only if
y − x ∈ R+(A).

Proof. If x, y ∈ R+(A) with x + y = 0, then x and y are both zero (since a direct sum of representations
is zero if and only if each summand is zero). Note that an arbitrary element of R(A) can be written as a
difference x−y, where x, y ∈ R+(A). Then x and y are equivalence classes of representations V,W ∈ Rep(A).
We have either V ≤ W or W ≤ V . Assume without loss of generality that W ≤ V . Then V ' W ⊕W ′, so
x = y + y′ in R+(A) and therefore x− y = y′ ∈ R+(A).

Remark 13. When restricted to the subset R+(A) ⊆ R(A), the linear ordering of Proposition 12 agrees
with the linear ordering on representations introduced at the beginning of this lecture.

Proposition 14. Let A be a factor. Then the linearly ordered abelian group R(A) is Archimedean. That is,
if x and y are positive elements of R(A), then x < ny for n� 0.
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Proof. The elements x and y correspond to isomorphism classes of finite representations V,W ∈ Rep(A).
Suppose for a contradiction that we have ny ≤ x for every integer n. Taking n = 1, we obtain an isometric
embedding f1 : V → W . Let W1 be the orthogonal complement of the image of f1. Then W1 represents
x − y ∈ R(A). Taking n = 2, we get y ≤ x − y, so there exists an isometric embedding f2 : V → W1 ⊆ W
Continuing in this way, we obtain an infinite collection of isometric embeddings fi : V → W with mutually
orthogonal images. It follows that V ⊕∞ appears as a direct summand of W . Since V 6= 0, V ⊕∞ is infinite,
so that W is infinite, contrary to our assumptions.

Recall that if G is a linearly ordered abelian group satisfying the Archimedean property, then there exists
an order-preserving embedding G ↪→ R. In particular, we obtain an embedding R(A) ↪→ R.

We will prove the following result in the next lecture:

Proposition 15. Let A be a factor. Then exactly one of the following conditions holds:

(a) The group R(A) is isomorphic (as a linearly ordered group) to Z.

(b) The group R(A) is isomorphic (as a linearly ordered group) to R.

(c) The group R(A) is trivial.

Remark 16. The group R(A) is isomorphic to Z if and only if there is a smallest positive element of
R(A). The existence of such an element is equivalent to the existence of an irreducible representation of A.
Consequently, case (a) of Proposition 15 applies precisely when A is a type I factor.

Definition 17. Let A be a factor. We say that A is type II if case (b) of Proposition 15 holds, and type III
if case (c) of Proposition 15 holds. That is, A is type II if it has finite representations but no irreducible
representations, and type III if it has no finite representations.

4


