
Math 261y: von Neumann Algebras (Lecture 19)

October 17, 2011

Let X be a standard measure space, fixed throughout this lecture.
Our main goal in this lecture is to complete the proof we began in the previous lecture, establishing an

equivalence between measurable fields of Hilbert spaces on X and separable representations of L∞(X).

Suppose we are given measurable fields ({Vx}, Vmeas) and (V ′x, V
′
meas), and a bounded operator F : V

(2)
meas →

V
′(2)
meas. which commutes with the action of L∞(X). Let C = ||F ||, let fi be a normalized generating sequence

in Vmeas. We claim that for almost every x ∈ X, the construction

v 7→
∑
i≥1

(v, fi(x))xF (fi)(x)

determines a bounded operator Fx : Vx → V ′x, having operator norm ≤ C. This map is evidently well-defined
on the linear span of the vectors fi(x) in Vx To prove this operator has norm ≤ C, it will suffice to verify
this on the finite-dimensional subspaces spanned by {fi(x)}1≤i≤n for each n ≥ 0. It will suffice to show that
for almost every x ∈ X, the map

Cn → V ′x

(z1, . . . , zn) 7→
∑

1≤i≤n

ziF (fi)(x)

has norm ≤ C. Note that if this condition is violated for some x ∈ X, then there exists a vector ~z =
(z1, . . . , zn) lying in the unit ball of Cn such that ||

∑
1≤i≤n ziF (fi)|| > C. The collection of such vectors ~z

forms an open subset of the unit ball of Cn. Choose a countable dense subset S of the unit ball, and for each
~z ∈ S set X~z = {x ∈ X : |

∑
ziF (fi)(x)| > C}. We wish to show that

⋃
~z∈S X~z has measure zero. Assume

otherwise; then Y = X~z has positive measure for some ~z = (z1, . . . , zn) ∈ S. Set f = χY (
∑
zifi) ∈ V (2)

meas,
where χY denotes the characteristic function of Y . Then

F (f) = χY

∑
ziF (fi)

has norm > C at the points of Y . Thus

||F (f)||2 > C2µ(Y ) > C2||f ||2,

contradicting our assumption on the norm of F . This completes the proof that the construction

({Vx}, Vmeas) 7→ V (2)
meas

is fully faithful.
We now prove the essential surjectivity. Suppose that V is a separable representation of L∞(X). Choose

an orthonormal basis v1, v2, . . . for V , and let V0 be the subspace of V consisting of finite linear combinations
of the vectors vi.

For i, j ≤ 1, the construction
(λ ∈ L∞(X)) 7→ (λvi, vj)
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is ultraweakly continuous, and therefore given by

λ 7→
∫
X

λhi,jdµ

for some hi,j ∈ L1(X). Note that hi,j = hj,i. For each x ∈ X, we define an inner product (, )x on V0 by the
formula

(vi, vj)x = hi,j .

Lemma 1. In the situation above, the inner product (, )x is positive semidefinite for almost every x ∈ X.

Proof. It will suffice to show that, for each n ≥ 0, the inner product (, )x is positive semidefinite on W =
Cv1 + · · ·+Cvn for almost every x. Let Y be the set of those elements x ∈ X such that (, )x is not positive
semidefinite on W . Choose a countable dense subset S ⊆ W . For x ∈ Y , there exists a vector w ∈ W such
that (w,w)x < 0. The collection vectors w which satisfy this condition is open, so we may assume without
loss of generality that w ∈ S. Thus

Y =
⋃
w∈S

Yw,

where Yw = {x ∈ X : (w,w)x < 0}. It will therefore suffice to show that each Yw has measure zero. Assume
otherwise and let χ denote the characteristic function of Yw. Then

0 ≤ (χw,w) =

∫
X

χ(w,w)xdµ < 0,

a contradiction.

Throwing out a set of measure zero, we may assume that each of the inner products (, )x is positive
semidefinite; we let Vx denote the Hilbert space obtained by completing V0 with respect to the inner product
(, )x. In what follows, we will abuse notation by identifying elements of V0 with their images in Vx. Let
δ : V0 →

∏
x∈X Vx be the evident diagonal map. Let us say that a section g ∈

∏
x∈X Vx is measurable if the

function x 7→ (g(x), vi)x is measurable for each i ≥ 1. Let Vmeas ⊆
∏

x∈X Vx be the collection of measurable
sections. Since the functions hi,j are measurable, we conclude that δ(vi) ∈ Vmeas for i ≥ 1. It follows that
({Vx}, Vmeas) is a measurable field of Hilbert spaces on X, with a generating sequence given by the δ(vi).

By construction, we have

(δ(vi), δ(vj)) =

∫
X

(vi, vj)xdµ =

∫
hi,jdµ = (vi, vj).

In particular, each δ(vi) is square integrable, and the map δ : V0 → V
(2)
meas is isometric. The map δ extends

uniquely to a map of (non-topologized) L∞(X)-modules

δ+ : L∞(X)⊗C V0 → V (2)
meas.

The L∞(X)-module structure on V determines a map L∞(X)⊗CV0 → V , and therefore a pre-inner product
on L∞(X)⊗C V0. The vector space L∞(X)⊗C V0 is spanned by vectors of the form λvi, where λ ∈ L∞(X).
We compute

(δ+(λvi), δ
+(λ′vj)) = (λδ(vi), λ

′δ(vj))

=

∫
X

λλ
′
hi,jdµ

= (λλ
′
vi, vj)

= (λvi, λvj).
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It follows that the map δ+ is an isometry. Since the map L∞(X)⊗C V0 → V has dense image, it exhibits V
as the Hilbert space completion of L∞(X)⊗C V0. It follows that δ+ factors through an isometry of Hilbert

spaces δ : V → V
(2)
meas, which is evidently a map of L∞-modules.

To complete the proof, it will suffice to show that δ is an isomorphism. Since it is an isometry, it

is injective. The image of δ is an L∞(X)-submodule of V
(2)
meas which contains the generating sequence

δ(v1), δ(v2), . . ., and is therefore dense in V
(2)
meas. Since this image is also closed (by virtue of the fact that δ

is an isometry), we conclude that δ is surjective.
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