
Math 261y: von Neumann Algebras (Lecture 12)

September 27, 2011

In this lecture, we will complete our algebraic characterization of von Neumann algebra morphisms by
proving the following result:

Lemma 1. Let A be a von Neumann algebra and let µ : A→ C be a linear functional. If µ is ultra-strongly
continuous on the unit ball A≤1, then µ is ultraweakly continuous.

In fact, we will prove the following:

Proposition 2. Let A be a von Neumann algebra with unit ball A≤1, and let µ : A → C be a linear
functional. The following conditions are equivalent:

(a) µ is ultraweakly continuous.

(a′) The kernel ker(µ) is closed in the ultraweak topology.

(b) µ is ultrastrongly continuous.

(b′) The kernel ker(µ) is closed in the ultrastrong topology.

(c) µ is ultraweakly continuous on A≤1.

(c′) The set ker(µ) ∩A≤1 is ultraweakly closed.

(d) µ is ultrastrongly continuous on A≤1.

(d′) The set ker(µ) ∩A≤1 is ultrastrongly closed.

We have an obvious web of implications

(a) //

!!

��

(c)

��

!!
(a′) //

��

(c′)

��

(b) //

!!

(d)

!!
(b′) // (d′)

In particular, condition (a) is the strongest and condition (d′) is the weakest. The results of the last lecture
shows that a completely additive state satisfies (d), and that a state which satisfies (a) is completely additive.
We will prove Proposition 2 by showing that (d′)⇒ (a). Actually, we will proceed by showing that

(d′)⇒ (c′)→ (a′)⇒ (a).
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The implications (a′)⇒ (a) and (b′)⇒ (b) are easy. If ker(µ) is closed (for whatever topology), then the
quotient topology on A/ ker(µ) is Hausdorff, and therefore agrees with the standard topology on A/ ker(µ) '
C. It follows that the composite map A→ A/ ker(µ)→ C is continuous.

Lemma 3. We have (b) ⇒ (a). That is, every ultrastrongly continuous functional on a von Neumann
algebra A ⊆ B(V ) is ultraweakly continuous.

Proof. Let µ : A → B(V ) be ultrastrongly continuous. Then there exists a vector v ∈ V ⊕∞ such that
|µ(x)| ≤ ||x(v)|| for each x ∈ A. Replacing V by V∞, we can assume v ∈ V . Define a functional µ0 : Av → C
by the formula µ0(x(v)) = µ(x) (this is well-defined: if x(v) = y(v), then (x−y)(v) = 0, so that µ(x−y) = 0
and µ(x) = µ(y)). We have |µ0(x(v))| = |µ(x)| ≤ ||x(v)||, so that µ0 has operator norm ≤ 1. It follows
that µ0 extends to a continuous functional on the closure V0 = Av ⊆ V . Since V0 is a Hilbert space, this
functional is given by inner product with some vector w ∈ V0. Then

µ(x) = (x(v), w),

so that µ is ultraweakly continuous.

We will need the following basic result from the theory of convexity:

Theorem 4. Let W be a locally convex topological vector space (over the real numbers, say), and let K ⊆W .
The following conditions are equivalent:

(1) The set K is closed and convex.

(2) There exists a collection of continuous functionals λα : W → R and a collection of real numbers Cα
such that K = {w ∈W : (∀α)[λα(w) ≥ Cα]}.

Proof. We may assume without loss of generality that K contains the origin. Let v ∈ W −K. Since K is
closed, there exists an open neighborhood U of the origin such that (v + U) ∩ K = ∅. Since W is locally
convex, we can assume that U is convex. Then K + U is a convex subset of the origin. For w ∈W , define

||w|| = inf{t ∈ R>0 : tw ∈ K + U}.

This is almost a prenorm on W : the convexity of K + U gives

||w + w′|| ≤ ||w||+ ||w′||,

and we obviously have
||tw|| = t||w||

for t ≥ 0. This generally does not hold for t < 0: that is, we can have ||w|| 6= ||−w||. Note that ||v|| ≥ 1 (since
v /∈ K + U). Define µ : R v → R by the formula µ(tv) = t, so that µ satisfies the inequality µ(w) ≤ ||w|| for
w ∈ R v. The proof of the Hahn-Banach theorem allows us to extend µ to a function on all of W satisfying
the same condition. We have |µ(w)| = ±µ(w) ≤ 1 for w ∈ U ∩−U , so that µ is continuous. Since µ(v) = 1,
µ does not vanish so there exists u ∈ U with µ(u) = ε > 0. Then for k ∈ K, we have µ(k + u) ≤ 1, so that
µ(k) ≤ 1− µ(u). Then

{w ∈W : µ(w) ≤ 1− µ(u)}

is a closed half-space containing K which does not contain v.

Corollary 5. Let A be a von Neumann algebra, and let K ⊆ A be a convex subset. Then K is closed for
the ultraweak topology if and only if K is closed for the ultrastrong topology.

From Corollary 5 we get the implications (b′) ⇒ (a′) and (d′) ⇒ (c′). To complete the proof, it suffices
to show that (c′)⇒ (a′). Recall that A admits a Banach space predual E, and that the ultraweak topology
on A coincides with the weak ∗-topology. The implication (c′)⇒ (a′) is a special case of the following more
general assertion:
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Theorem 6 (Krein-Smulian). Let E be a real Banach space and let K ⊆ E∨ be a convex set. For each
real number r ≥ 0, we let E∨≤r denote the closed unit ball of radius r in E∨. If each of the intersections
K≤r = K ∩ E∨≤r is closed for the weak ∗-topology, then K is closed for the weak ∗-topology.

Proof. Let v ∈ E −K; we wish to show that v does not belong to the weak ∗-closure of K. Replacing K by
K − v, we can reduce to the case where v = 0. Since each K≤r is closed in the weak ∗-topology, it is also
closed in the norm topology. It follows that K is closed in the norm topology. In particular, since 0 /∈ K,
there exists a real number ε > 0 such that E∨≤ε does not intersect K. By rescaling, we can assume that ε = 1.

We construct a sequence of finite subsets S1, S2, S3, . . . ⊆ E with the following properties:

(a) If µ ∈ K≤n+1, then there exists v ∈ S1 ∪ · · · ∪ Sn such that µ(v) > 1.

(b) If v ∈ Sn, then ||v|| = 1
n .

Assume that S1, . . . , Sn−1 have been constructed, and set

K(n) = K≤n+1 ∩ {µ ∈ E : (∀v ∈ S1 ∪ · · · ∪ Sn−1)[µ(v) ≤ 1]}

Then K(n) is a weak ∗-closed subset of E∨ which is bounded in the norm topology, and is therefore weak
∗-compact. By construction, K(n) does not intersect K≤n. It follows that if µ ∈ K(n), then ||µ|| > n. We
may therefore choose a vector v ∈ E with ||v|| = 1

n such that µ belongs to the set Uv = {ρ ∈ E∨ : ρ(v) > 1}
(which is open for the weak ∗-topology). Since K(n) is compact, we can cover K(n) by finitely many such
open sets Uv1 , Uv2 , . . . , Uvm . We then take Sn = {v1, . . . , vm}.

Let S =
⋃
Si. Then S is a countable subset of E; we can enumerate its elements as v1, v2, . . . (if S

is finite, we can extend this sequence by adding a sequence of zeros at the end). By construction, this
sequence converges to zero in the norm topology on E. Let C0(Z>0) denote the the Banach space consisting
of continuous maps

Z>0 → R

which vanish at infinity: that is, the Banach space of sequences (λ1, λ2, . . .) which converge to zero. We have
a map

f : E∨ → C0(Z>0)

given by µ 7→ (µ(v1), µ(v2), · · · ). The image f(K) is a convex subset of C0(Z>0). By construction, if µ ∈ K
then µ(vi) > 1 for some i, so that f(K) does not intersect the unit ball of C0(Z>0). It follows that 0
does not belong to the closure of f(K). Applying Theorem 4, we see that there is a continuous functional
ρ : C0(Z>0)→ R such that ρ(K) ⊆ R≥1. This functional is given by a summable sequence of real numbers
(c1, c2, . . .), and satisfies ∑

ciµ(vi) ≥ 1

for each µ ∈ K. Set v =
∑
civi; then v ∈ E is a vector satisfying µ(v) ≥ 1 for µ ∈ K. Then K is contained

in the weak ∗-closed set {µ ∈ E∨ : µ(v) ≥ 1}, so that 0 does not belong to the closure of K.
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