
Math 261y: von Neumann Algebras (Lecture 11)

September 26, 2011

In the last lecture, we promised a proof of the following assertion:

Theorem 1. Let φ : A→ B be a ∗-algebra homomorphism between von Neumann algebras. If φ is completely
additive, then it is ultraweakly continuous.

Our goal in this lecture is to prove Theorem 1. Assume that φ : A → B is completely additive; we
wish to show that it is ultraweakly continuous. Using the definition of the ultraweak topology on B, this is
equivalent to the following assertion:

(a) For every ultraweakly continuous linear functional µ : B → C, the composite map µ ◦ φ : A→ C is an
ultraweakly continuous functional on A.

The next step is to observe that it suffices to consider ultraweakly continuous states of B, by virtue of
the following:

Lemma 2. Let B ⊆ B(V ) be a von Neumann algebra. Then the vector space of ultraweakly continuous
functionals on B is generated by ultraweakly continuous states.

Proof. Every ultraweakly continuous functional µ : B → C is given by

µ(x) =
∑

(x(vi), wi)

for some sequences of vectors vi, wi ∈ V with
∑
||vi||2 <∞,

∑
||wi||2 <∞. Replacing V by V ⊕∞, we may

assume that µ is given by µ(x) = (x(v), w). Then

µ(x) =
1

4
(x(v + w), v + w) +

i

4
(x(v + iw), v + iw) +−1

4
(x(v − w), v − w)− i

4
(x(v − iw), v − iw)

is a linear combination of ultraweakly continuous positive functionals, each of which is a multiple of an
ultraweakly continuous state.

Returning to the proof of Theorem 1, we are reduced to proving the following:

(b) Let φ : A → B be completely additive, and let µ : B → C be an ultraweakly continuous state. Then
µ ◦ φ is an ultraweakly continuous state on A.

Definition 3. Let A be a von Neumann algebra and let µ : A→ C be a state. We will say that µ is completely
additive if, for every collection {eα} of mutually orthogonal projections on A, we have µ(

∑
eα) =

∑
µ(eα).

It is clear that every ultraweakly continuous state is completely additive. Moreover, if φ : A → B is a
completely additive ∗-algebra homomorphism and µ : B → C is a completely additive state, then µ ◦ φ is a
completely additive state on A. We are therefore reduced to proving the following:

Proposition 4. Let A ⊆ B(V ) be a von Neumann algebra and let µ : A→ C be a completely additive state.
Then µ is ultraweakly continuous.
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We will break the proof of Proposition 4 into two parts:

Lemma 5. Let A ⊆ B(V ) be a von Neumann algebra and let µ : A → C be a completely additive state.
Then µ is ultra-strongly continuous when restricted to the unit ball A≤1.

Lemma 6. Let A be a von Neumann algebra and let µ : A→ C be a linear functional. If µ is ultra-strongly
continuous on the unit ball A≤1, then µ is ultraweakly continuous.

The proof of Lemma 6 uses some ideas from functional analysis and will be given in the next lecture.
Let us concentrate on Lemma 5. We will need a short digression concerning the structure of abelian von
Neumann algebras.

Proposition 7. Let A ⊆ B(V ) be a commutative von Neumann algebra, and set X = SpecA (so that
A ' C0(X)). Then the compact Hausdorff space X has the following property: for every continuous function
f : X → [−1, 1], there exists a decomposition X = X−

∐
X+ into clopen subsets where {x ∈ X : f(x) <

0} ⊆ X− and {x ∈ X : f(x) > 0} ⊆ X+.

Proof. Define f+ : X → [0, 1] by the formula

f+(x) =

{
f(x) if f(x) ≥ 0

0 otherwise.

Then f+ ∈ A determines a self-adjoint operator on V , and therefore determines an orthogonal decomposition
V ' ker(f+)⊕ f+(V ). Since f+ belongs the center of A, this decomposition is A-invariant. Let e denote the
projection onto ker(f+), so that e ∈ A′′ = A can be identified with a function on X. Since e is idempotent,
this determines a decomposition of X into pieces X− = {x ∈ X : e(x) = 0} and X+ = {x ∈ X : e(x) = 1}.
We claim that X− and X+ have the desired properties. To prove this, we note that e is the identity on
f+(V ), so that ef+ = f+ and therefore X+ contains the support of the function f+. Similarly, if we set
f− = f − f+, then ef− = 0 so that X− contains the support of f−.

Remark 8. The property of X appearing in the statement of Proposition 7 should seem very strange. It is
not satisfied for any metric space (except those equipped with the discrete topology).

Corollary 9. Let A ⊆ B(V ) be a commutative von Neumann algebra. Then every nonnegative function on
X = SpecA can be written as a limit of nonnegative locally constant functions.

Proof. Let f : X → [0, 1] be a continuous function. Using Proposition 7, we can decompose X into clopen
pieces X− and X+ containing f−1[0, 12 ) and f−1( 1

2 , 1]. Set

f0(x) =

{
1
2 if x ∈ X+

0 if x ∈ X−.

Then f − f0 is a continuous function with values in [0, 12 ]. Iterating this procedure, we get arbitrarily good
approximations to f .

Corollary 10. Let A ⊆ B(V ) be a von Neumann algebra and let x ∈ A be a positive element. Then x can be
written as a limit (in the norm topology) of positive linear combinations of mutually orthogonal projections.

Proof. Replacing A by the ultraweak closure of C[x], we can reduce to the case where A is commutative, in
which case the desired result follows from Corollary 9.

Let A be a von Neumann algebra, and let µ, µ′ : A→ C be norm-continuous linear functionals. We write
µ ≤ µ′ if the difference µ′ − µ is a positive functional: that is, if µ(x) ≤ µ′(x) for every positive element
x ∈ A. Using Corollary 10, we see that it suffices to check that µ(e) ≤ µ′(e) for every projection e ∈ A.

2



Proposition 11. Let A ⊆ B(V ) be a von Neumann algebra. Let µ : A→ C be a positive linear functional,
let v ∈ V be a vector with ||v||2 = µ(1), and let µv : A→ C be given by µv(x) = (x(v), v). Then there exists
a nonzero projection e ∈ A such that µ ≤ µv when restricted to the von Neumann algebra eAe.

Proof. Let S be the set of projections e′ in A such that µv(e
′) < µ(e′), and let T be the collection of all

subsets of S consisting of mutually orthogonal elements. Using Zorn’s lemma, we deduce that T has a
maximal element S0 ⊆ S. If S0 is empty, then µ(e′) ≤ µv(e′) for every projection e′, so that µ ≤ µv and we
are done.

Otherwise, let f =
∑
e′∈S0

e′. We have

µv(f) =
∑
e′∈S0

µv(e
′) <

∑
e′∈S0

µ(e′) ≤ µ(f) ≤ µ(1).

Since µv(1) = ||v||2 = µ(1), we must have f 6= 1. Set e = 1− f . Since every projection in eAe is orthogonal
to each ei, we conclude from the maximality of S that µ ≤ µv on eAe.

Now let µ : A→ C be a state. Using Zorn’s lemma, we can choose a maximal collection of pairs (eα, vα)
such that the eα are mutually orthogonal projections belonging to A, and µ ≤ µvα when restricted to eαAeα.
Set e =

∑
eα and e′ = 1− e. If e 6= 1, then we can apply Proposition 11 to the von Neumann algebra e′Ae′

(acting on e′V 6= 0) to contradict the maximality of our collection.
We now prove Lemma 5 by showing that if µ is completely additive, then the restriction of µ to A≤1 is

ultra-strongly continuous. For this, we must show that for each ε > 0, there exists an ultra-strongly open
neighborhood U ⊆ A of 0, such that |µ(x)| ≤ ε for x ∈ U ∩A≤1. Since µ is completely additive, we have

1 = µ(1) =
∑
α

µ(eα).

We may therefore choose a finite subset {e1, . . . , en} of our projections such that

µ(e1) + · · ·+ µ(en) ≥ 1− ε2

4

. Let q = 1− e1 − · · · − en, so that µ(q) ≤ ε2

4 . For each x ∈ A≤1, we have

|µ(x)| ≤ |µ(xq)|+
∑

1≤i≤n

|µ(xei)|

Since the pairing (a, b) 7→ µ(b∗a) is positive semidefinite on A, the Cauchy-Schwartz inequality gives

|µ(b∗a)| ≤ |µ(b∗b)| 12 |µ(a∗a)| 12 . In particular we get

|µ(xq)| ≤ |µ(x∗x)| 12 |µ(q)| 12

Since x∗x is a positive element of the unit ball A≤1, we have x∗x ≤ 1, so that |µ(x∗x)| ≤ 1. By construction,

we have |µ(q)| ≤ ε2

4 . Combining these facts, we get

|µ(xq)| ≤ ε

2
.

Applying the Cauchy-Schwartz inequality again gives

|µ(xei)| = |µ(1(xei))| ≤ |µ(1)| 12 |µ(eix
∗xei)|

1
2 ≤ ||xeivi||

1
2 .

We therefore get

|µ(x)| ≤ ε

2
+

∑
1≤i≤n

||x(eivi)||
1
2 .

This is ≤ ε on the intersection

A≤1 ∩ {x ∈ A : (∀1 ≤ i ≤ n)[||x(eivi)|| <
ε

2n
]}

where the latter set is an open neighborhood of 0 in the strong topology.
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