Math 261y: von Neumann Algebras (Lecture 11)

September 26, 2011

In the last lecture, we promised a proof of the following assertion:

Theorem 1. Let $\phi : A \to B$ be a *-algebra homomorphism between von Neumann algebras. If ϕ is completely additive, then it is ultraweakly continuous.

Our goal in this lecture is to prove Theorem 1. Assume that $\phi : A \to B$ is completely additive; we wish to show that it is ultraweakly continuous. Using the definition of the ultraweak topology on B, this is equivalent to the following assertion:

(a) For every ultraweakly continuous linear functional $\mu: B \to \mathbf{C}$, the composite map $\mu \circ \phi: A \to \mathbf{C}$ is an ultraweakly continuous functional on A.

The next step is to observe that it suffices to consider ultraweakly continuous *states* of B, by virtue of the following:

Lemma 2. Let $B \subseteq B(V)$ be a von Neumann algebra. Then the vector space of ultraweakly continuous functionals on B is generated by ultraweakly continuous states.

Proof. Every ultraweakly continuous functional $\mu: B \to \mathbf{C}$ is given by

$$\mu(x) = \sum (x(v_i), w_i)$$

for some sequences of vectors $v_i, w_i \in V$ with $\sum ||v_i||^2 < \infty$, $\sum ||w_i||^2 < \infty$. Replacing V by $V^{\oplus \infty}$, we may assume that μ is given by $\mu(x) = (x(v), w)$. Then

$$\mu(x) = \frac{1}{4}(x(v+w), v+w) + \frac{i}{4}(x(v+iw), v+iw) + -\frac{1}{4}(x(v-w), v-w) - \frac{i}{4}(x(v-iw), v-iw) + \frac{i}{4}(x(v-iw)$$

is a linear combination of ultraweakly continuous positive functionals, each of which is a multiple of an ultraweakly continuous state. $\hfill \Box$

Returning to the proof of Theorem 1, we are reduced to proving the following:

(b) Let $\phi : A \to B$ be completely additive, and let $\mu : B \to \mathbb{C}$ be an ultraweakly continuous state. Then $\mu \circ \phi$ is an ultraweakly continuous state on A.

Definition 3. Let A be a von Neumann algebra and let $\mu : A \to \mathbf{C}$ be a state. We will say that μ is *completely* additive if, for every collection $\{e_{\alpha}\}$ of mutually orthogonal projections on A, we have $\mu(\sum e_{\alpha}) = \sum \mu(e_{\alpha})$.

It is clear that every ultraweakly continuous state is completely additive. Moreover, if $\phi : A \to B$ is a completely additive *-algebra homomorphism and $\mu : B \to \mathbf{C}$ is a completely additive state, then $\mu \circ \phi$ is a completely additive state on A. We are therefore reduced to proving the following:

Proposition 4. Let $A \subseteq B(V)$ be a von Neumann algebra and let $\mu : A \to \mathbb{C}$ be a completely additive state. Then μ is ultraweakly continuous. We will break the proof of Proposition 4 into two parts:

Lemma 5. Let $A \subseteq B(V)$ be a von Neumann algebra and let $\mu : A \to \mathbf{C}$ be a completely additive state. Then μ is ultra-strongly continuous when restricted to the unit ball $A_{\leq 1}$.

Lemma 6. Let A be a von Neumann algebra and let $\mu : A \to \mathbf{C}$ be a linear functional. If μ is ultra-strongly continuous on the unit ball $A_{\leq 1}$, then μ is ultraweakly continuous.

The proof of Lemma 6 uses some ideas from functional analysis and will be given in the next lecture. Let us concentrate on Lemma 5. We will need a short digression concerning the structure of abelian von Neumann algebras.

Proposition 7. Let $A \subseteq B(V)$ be a commutative von Neumann algebra, and set X = Spec A (so that $A \simeq C^0(X)$). Then the compact Hausdorff space X has the following property: for every continuous function $f: X \to [-1, 1]$, there exists a decomposition $X = X_- \coprod X_+$ into clopen subsets where $\{x \in X : f(x) < 0\} \subseteq X_-$ and $\{x \in X : f(x) > 0\} \subseteq X_+$.

Proof. Define $f_+: X \to [0,1]$ by the formula

$$f_{+}(x) = \begin{cases} f(x) & \text{if } f(x) \ge 0\\ 0 & \text{otherwise.} \end{cases}$$

Then $f_+ \in A$ determines a self-adjoint operator on V, and therefore determines an orthogonal decomposition $V \simeq \ker(f_+) \oplus \overline{f_+(V)}$. Since f_+ belongs the center of A, this decomposition is A-invariant. Let e denote the projection onto $\ker(f_+)$, so that $e \in A'' = A$ can be identified with a function on X. Since e is idempotent, this determines a decomposition of X into pieces $X_- = \{x \in X : e(x) = 0\}$ and $X_+ = \{x \in X : e(x) = 1\}$. We claim that X_- and X_+ have the desired properties. To prove this, we note that e is the identity on $f_+(V)$, so that $ef_+ = f_+$ and therefore X_+ contains the support of the function f_+ . Similarly, if we set $f_- = f - f_+$, then $ef_- = 0$ so that X_- contains the support of f_- .

Remark 8. The property of X appearing in the statement of Proposition 7 should seem very strange. It is not satisfied for any metric space (except those equipped with the discrete topology).

Corollary 9. Let $A \subseteq B(V)$ be a commutative von Neumann algebra. Then every nonnegative function on X = Spec A can be written as a limit of nonnegative locally constant functions.

Proof. Let $f: X \to [0,1]$ be a continuous function. Using Proposition 7, we can decompose X into clopen pieces X_{-} and X_{+} containing $f^{-1}[0,\frac{1}{2})$ and $f^{-1}(\frac{1}{2},1]$. Set

$$f_0(x) = \begin{cases} \frac{1}{2} & \text{if } x \in X_+ \\ 0 & \text{if } x \in X_-. \end{cases}$$

Then $f - f_0$ is a continuous function with values in $[0, \frac{1}{2}]$. Iterating this procedure, we get arbitrarily good approximations to f.

Corollary 10. Let $A \subseteq B(V)$ be a von Neumann algebra and let $x \in A$ be a positive element. Then x can be written as a limit (in the norm topology) of positive linear combinations of mutually orthogonal projections.

Proof. Replacing A by the ultraweak closure of $\mathbf{C}[x]$, we can reduce to the case where A is commutative, in which case the desired result follows from Corollary 9.

Let A be a von Neumann algebra, and let $\mu, \mu' : A \to \mathbf{C}$ be norm-continuous linear functionals. We write $\mu \leq \mu'$ if the difference $\mu' - \mu$ is a positive functional: that is, if $\mu(x) \leq \mu'(x)$ for every positive element $x \in A$. Using Corollary 10, we see that it suffices to check that $\mu(e) \leq \mu'(e)$ for every projection $e \in A$.

Proposition 11. Let $A \subseteq B(V)$ be a von Neumann algebra. Let $\mu : A \to \mathbf{C}$ be a positive linear functional, let $v \in V$ be a vector with $||v||^2 = \mu(1)$, and let $\mu_v : A \to \mathbf{C}$ be given by $\mu_v(x) = (x(v), v)$. Then there exists a nonzero projection $e \in A$ such that $\mu \leq \mu_v$ when restricted to the von Neumann algebra eAe.

Proof. Let S be the set of projections e' in A such that $\mu_v(e') < \mu(e')$, and let T be the collection of all subsets of S consisting of mutually orthogonal elements. Using Zorn's lemma, we deduce that T has a maximal element $S_0 \subseteq S$. If S_0 is empty, then $\mu(e') \leq \mu_v(e')$ for every projection e', so that $\mu \leq \mu_v$ and we are done.

Otherwise, let $f = \sum_{e' \in S_0} e'$. We have

$$\mu_v(f) = \sum_{e' \in S_0} \mu_v(e') < \sum_{e' \in S_0} \mu(e') \le \mu(f) \le \mu(1).$$

Since $\mu_v(1) = ||v||^2 = \mu(1)$, we must have $f \neq 1$. Set e = 1 - f. Since every projection in *eAe* is orthogonal to each e_i , we conclude from the maximality of S that $\mu \leq \mu_v$ on *eAe*.

Now let $\mu : A \to \mathbf{C}$ be a state. Using Zorn's lemma, we can choose a maximal collection of pairs (e_{α}, v_{α}) such that the e_{α} are mutually orthogonal projections belonging to A, and $\mu \leq \mu_{v_{\alpha}}$ when restricted to $e_{\alpha}Ae_{\alpha}$. Set $e = \sum e_{\alpha}$ and e' = 1 - e. If $e \neq 1$, then we can apply Proposition 11 to the von Neumann algebra e'Ae'(acting on $e'V \neq 0$) to contradict the maximality of our collection.

We now prove Lemma 5 by showing that if μ is completely additive, then the restriction of μ to $A_{\leq 1}$ is ultra-strongly continuous. For this, we must show that for each $\epsilon > 0$, there exists an ultra-strongly open neighborhood $U \subseteq A$ of 0, such that $|\mu(x)| \leq \epsilon$ for $x \in U \cap A_{\leq 1}$. Since μ is completely additive, we have

$$1 = \mu(1) = \sum_{\alpha} \mu(e_{\alpha}).$$

We may therefore choose a finite subset $\{e_1, \ldots, e_n\}$ of our projections such that

$$\mu(e_1) + \dots + \mu(e_n) \ge 1 - \frac{\epsilon^2}{4}$$

. Let $q = 1 - e_1 - \dots - e_n$, so that $\mu(q) \leq \frac{\epsilon^2}{4}$. For each $x \in A_{\leq 1}$, we have

$$|\mu(x)| \le |\mu(xq)| + \sum_{1 \le i \le n} |\mu(xe_i)|$$

Since the pairing $(a,b) \mapsto \mu(b^*a)$ is positive semidefinite on A, the Cauchy-Schwartz inequality gives $|\mu(b^*a)| \leq |\mu(b^*b)|^{\frac{1}{2}} |\mu(a^*a)|^{\frac{1}{2}}$. In particular we get

$$|\mu(xq)| \le |\mu(x^*x)|^{\frac{1}{2}} |\mu(q)|^{\frac{1}{2}}$$

Since x^*x is a positive element of the unit ball $A_{\leq 1}$, we have $x^*x \leq 1$, so that $|\mu(x^*x)| \leq 1$. By construction, we have $|\mu(q)| \leq \frac{\epsilon^2}{4}$. Combining these facts, we get

$$|\mu(xq)| \le \frac{\epsilon}{2}.$$

Applying the Cauchy-Schwartz inequality again gives

$$|\mu(xe_i)| = |\mu(1(xe_i))| \le |\mu(1)|^{\frac{1}{2}} |\mu(e_i x^* xe_i)|^{\frac{1}{2}} \le ||xe_i v_i||^{\frac{1}{2}}.$$

We therefore get

$$|\mu(x)| \le \frac{\epsilon}{2} + \sum_{1 \le i \le n} ||x(e_i v_i)||^{\frac{1}{2}}.$$

This is $\leq \epsilon$ on the intersection

$$A_{\leq 1} \cap \{x \in A : (\forall 1 \leq i \leq n)[||x(e_i v_i)|| < \frac{\epsilon}{2n}]\}$$

where the latter set is an open neighborhood of 0 in the strong topology.