The Homology of MU (Lecture 7)

February 9, 2010

Last week, we defined the complex bordism spectrum MU and showed that it was a universal complex
oriented cohomology theory. In particular, there is a formal group law f(x,y) over the ring 7, MU. This
formal group law is classified by a map L — m, MU, where L is the Lazard ring. Our goal this week is to
prove the following fundamental result:

Theorem 1 (Quillen). The map L — w. MU is an isomorphism. (In particular, the spectrum MU has
homotopy groups only in even degrees.)

The obstacle to overcome in the proof of Theorem 1 is that homotopy groups are typically difficult
to compute. In this lecture, we will consider the much easier problem of computing the homology groups
H,(MU;Z). In fact, we will do something a little more general: namely, we compute the homology E,(MU),
where FE is an arbitrary complex oriented cohomology theory.

Since MU is the (homotopy) colimit of the sequence MU(n), we have E,(MU) ~ lim £,(MU(n)). Since
every complex vector bundle has a canonical E-orientation, we obtain a canonical isomorphism of E,.(MU(n))
with E,(BU(n)). Recall that FE,(BU(n)) can be identified with the symmetric power Sym” E,(BU(1)) =
Sym" (7. E{ B0, B1,...}), where {3;} is the dual basis to topological basis {t'} for E*(BU(1)) ~ (m.E)[[t]].

Correspondingly, we we identify E,(MU(n)) with the symmetric power Sym™ E,(MU(1)) ~ Sym" (7. E{bo, b1, ba, . .

where the {b;} are a dual basis to the basis {t*1} for the cohomology
E*(MU(1)) =~ E*(CP™®) ~ (1, E)[[t]] C (7. E)[[t]] ~ E*(CP>).

To pass to the bordism spectrum MU, we need to understand the transition maps E,.(MU(n)) —
E.(MU(n 4 1)). These maps are induced by the composition

MU(n) ~ S ® MU(n) ~ MU(0) ® MU(n) — MU(1) ® MU(n) — MU(n + 1).

In the case n = 0, the inclusion MU(0) — MU(1) induces a map 7, E = E,(MU(0)) — E.(MU(1)), which
simply corresponds to the element by in our chosen basis for E,(MU(1)). We conclude:

e For each n > 0, the map on homology Sym" (7. E){bg,b1,...} ~ E.(MU(n)) — E,(MU(n + 1)) ~
Sym™ ! (m, E){bo, by, ...} is given by multiplication by the class bo.

There is a map of polynomial algebras (7, E)[bg, b1, ba, ...] = (7. E)[b1,bs, ...] which carries by to 1. This
map induces an isomorphism from Sym™ (7, E{bg, b, ...}) to Sym="(m, E{b1, by, ...}). Under these isomor-
phisms, the map E,(MU(n)) — E,(MU(n+1)) simply corresponds to the inclusion Sym="(r, E{by, b, ...}) —
Sym=""! (7, E{by,bs,...}). Passing to the limit as n grows, we obtain the following:

Proposition 2. Let E be a complex oriented cohomology theory, and let {b;} C E.(MU(1)) be dual to the
topological basis {t'*1} for E*(MU(1)) ~ t(m.E)[[t]]. Then the images of the b; in E,(MU) determine a ring
isomorphism (m«E)[b1,ba,...] = E.(MU) (note that the image of by is the identity of E.(MU) ).

Corollary 3. There is a canonical isomorphism H,(MU; Z) ~ Z[by, b, .. .].
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To use this observation in the proof of Theorem 1, we need to understand the composition L — 7, MU —
H,(MU;Z) ~ Z[by,bs,...] (here the second map is the Hurewicz homomorphism). This map classifies a
formal group law over the commutative ring Z[by, bs,...]. We will see in a moment that this is the same
formal group law that we studied in Lecture 2.

It will be convenient to again consider a slightly more general problem. Let E be any complex ori-
ented cohomology theory. The smash product MU ® FE is another multiplicative cohomology theory, with
T(MUQ®E) = E.(MU) ~ (7. E)[by, bz, . . .]. This multiplicative cohomology theory has two complex orienta-
tions: one coming from our given complex orientation on F, and one from the universal complex orientation
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on MU. In other words, we can find two classes tg, tyuy € MU®E (CP), which determine isomorphisms

In particular, we can write t\jy as a power series

i+ 1

i>1
for some coefficients a; € (7. E)[b1, ba, .. ].

Claim 4. We have a; = b;: that is, we can write tyyy = tg + bthE + bgt% +....

To prove the claim, note that we can think of a class in MU ®E2(CP°°) as a map of spectra MU(1) —
MU®E. By general nonsense, this is the same thing as a map of E-module spectra from MU(1) ® E to
MU®E. Consequently, tg and tyy correspond to a pair of maps énu, o : MU(1) @ E — MU QE.

For every integer 4, the class b; € E;(MU(1)) determines a map of E-modules ¥*E — MU(1) ® E.
Taking the coproduct, we obtain an equivalence of F-module spectra

Di>oX¥E ~MU(1)® E.

Consequently, to describe a map of spectra from MU(1)® E to MU ®E, we just need to specify its restriction
to L2 E for every integer i.
The map ¢g is given by the composition

E@MU(1) D E% E@MU,

where A classifies the complex orientation of E and w is the unit map £ — EF ® MU. Since the {b;} are
chosen to be the dual basis to {t'T!}, we see that A vanishes on £2'E for i > 0, and restricts to the identity
map L%E ~ E when i = 0.

The map ¢mu is given by smashing with E the canonical map MU(1) — MU. In particular, ¢y can be
identified with the coproduct of the family of maps ¢}y : 5*'E — MU ®F classified by b; € Eo;(MU).

Note that the tensor product MU(1) ® E is acted on by the function spectrum ECP™. at the level of
homology, this is given by the action of the cohomology ring E*(CP) on the reduced homology E.(CP™)
(via the cap product). In particular, our complex orientation ¢ induces a map X~ 2(MU(1)®E) — MU(1)®E,
which we will denote by 7'. In terms of our identification MU(1)® E ~ @,;>0X?F, the map T carries 325 F
to X20=D E by the identity map for i > 0, and is zero otherwise.

It follows that ¢nu can be written as a formal sum ), (b%\/IU? where ¢fv[U is given by the composition

MU @ E L MU @ E D E % MUGE.

In other words, we have the formula

$mu = > bippo T



Identifying ¢pu and ¢z with classes in (MU ®E)?(MU(1)) =~ tg(m)[b1, - . .][[te]], we see that T* is given by
multiplication by tg. It follows that we have

tmu = Y ti(bite) =Y bt

This completes the proof of Claim 4.

Let R be the graded-commutative ring m.(MU®FE) ~ E,(MU) ~ (7.E)[b1,bs,...]. The complex ori-
entations tg and tyu give rise to a pair of formal group laws fg, fmu € Rlz,y]. These formal group
laws can be characterized as follows: if 71, m : CP® x CP* — CP* are the two projection maps and
m : CP® x CP>™ — CP denotes the multiplication, then we have

m*tep = fe(tite,mtg)  m tyu = fuu(ritvau, T i)
in the cohomology ring (MU ® E)*(CP°°). This immediately gives the following result:

Proposition 5. Let E be a complex oriented cohomology theory and let R, fg, fuu € R|[x,y]] be defined as
above. Let g(x) € R[[z]] denote the power series g(x) = x +b1x? +baz® + - -+, so we have the formal identity
tmu = g(tg). Then fuu is given by the formula

fau(z,y) = go felg™ (2),97'y).
Specializing to the case where F is an Eilenberg-MacLane spectrum HZ, we deduce:

Corollary 6. Let E = MU®HZ, equipped with the complex orientation coming from MU. Then w.E ~
H,(MU;Z) ~ Z[by,bs,...], and the formal group law over Zlby, by, .. ] is given by the formula f(z,y) =
g(g7 1 (x) + g7 (y)), where g(x) = 2 + byaz? + boa® + .. ..

It follows that the composition L — 7, MU — H,(MU; Z) is the homomorphism studied in Lecture 2.
We conclude:

Corollary 7. The composite map L — 7, MU — H,(MU;Z) is an isomorphism after tensoring with Q.

Since the Hurewicz map 7, MU — H,(MU; Z) is always a rational isomorphism, we deduce the following
baby version of Theorem 1:

Corollary 8. The map L — 7w, MU induces an isomorphism after tensoring with Q.

Since MU is a connective spectrum whose homology groups H,,(MU; Z) are finitely generated, we conclude
that the homotopy groups 7, MU are finitely generated abelian groups. Consequently, to prove Theorem
1 holds integrally, it will suffice to show that the map L — 7, MU becomes an isomorphism after p-adic
completion, for every prime number p. We will prove this later in the week, using the Adams spectral
sequence.



