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Last week, we defined the complex bordism spectrum MU and showed that it was a universal complex
oriented cohomology theory. In particular, there is a formal group law f(x, y) over the ring π∗MU. This
formal group law is classified by a map L → π∗MU, where L is the Lazard ring. Our goal this week is to
prove the following fundamental result:

Theorem 1 (Quillen). The map L → π∗MU is an isomorphism. (In particular, the spectrum MU has
homotopy groups only in even degrees.)

The obstacle to overcome in the proof of Theorem 1 is that homotopy groups are typically difficult
to compute. In this lecture, we will consider the much easier problem of computing the homology groups
H∗(MU; Z). In fact, we will do something a little more general: namely, we compute the homology E∗(MU),
where E is an arbitrary complex oriented cohomology theory.

Since MU is the (homotopy) colimit of the sequence MU(n), we have E∗(MU) ' lim−→E∗(MU(n)). Since
every complex vector bundle has a canonical E-orientation, we obtain a canonical isomorphism of E∗(MU(n))
with E∗(BU(n)). Recall that E∗(BU(n)) can be identified with the symmetric power SymnE∗(BU(1)) =
Symn(π∗E{β0, β1, . . .}), where {βi} is the dual basis to topological basis {ti} for E∗(BU(1)) ' (π∗E)[[t]].
Correspondingly, we we identify E∗(MU(n)) with the symmetric power SymnE∗(MU(1)) ' Symn(π∗E{b0, b1, b2, . . .}),
where the {bi} are a dual basis to the basis {ti+1} for the cohomology

E∗(MU(1)) ' Ẽ∗(CP∞) ' t(π∗E)[[t]] ⊆ (π∗E)[[t]] ' E∗(CP∞).

To pass to the bordism spectrum MU, we need to understand the transition maps E∗(MU(n)) →
E∗(MU(n+ 1)). These maps are induced by the composition

MU(n) ' S ⊗MU(n) ' MU(0)⊗MU(n)→ MU(1)⊗MU(n)→ MU(n+ 1).

In the case n = 0, the inclusion MU(0) → MU(1) induces a map π∗E = E∗(MU(0)) → E∗(MU(1)), which
simply corresponds to the element b0 in our chosen basis for E∗(MU(1)). We conclude:

• For each n ≥ 0, the map on homology Symn(π∗E){b0, b1, . . .} ' E∗(MU(n)) → E∗(MU(n + 1)) '
Symn+1(π∗E){b0, b1, . . .} is given by multiplication by the class b0.

There is a map of polynomial algebras (π∗E)[b0, b1, b2, . . .]→ (π∗E)[b1, b2, . . .] which carries b0 to 1. This
map induces an isomorphism from Symn(π∗E{b0, b1, . . .}) to Sym≤n(π∗E{b1, b2, . . .}). Under these isomor-
phisms, the map E∗(MU(n))→ E∗(MU(n+1)) simply corresponds to the inclusion Sym≤n(π∗E{b1, b2, . . .}) ↪→
Sym≤n+1(π∗E{b1, b2, . . .}). Passing to the limit as n grows, we obtain the following:

Proposition 2. Let E be a complex oriented cohomology theory, and let {bi} ⊆ E∗(MU(1)) be dual to the
topological basis {ti+1} for E∗(MU(1)) ' t(π∗E)[[t]]. Then the images of the bi in E∗(MU) determine a ring
isomorphism (π∗E)[b1, b2, . . .] ' E∗(MU) (note that the image of b0 is the identity of E∗(MU) ).

Corollary 3. There is a canonical isomorphism H∗(MU; Z) ' Z[b1, b2, . . .].
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To use this observation in the proof of Theorem 1, we need to understand the composition L→ π∗MU→
H∗(MU; Z) ' Z[b1, b2, . . .] (here the second map is the Hurewicz homomorphism). This map classifies a
formal group law over the commutative ring Z[b1, b2, . . .]. We will see in a moment that this is the same
formal group law that we studied in Lecture 2.

It will be convenient to again consider a slightly more general problem. Let E be any complex ori-
ented cohomology theory. The smash product MU⊗E is another multiplicative cohomology theory, with
π∗(MU⊗E) = E∗(MU) ' (π∗E)[b1, b2, . . .]. This multiplicative cohomology theory has two complex orienta-
tions: one coming from our given complex orientation on E, and one from the universal complex orientation

on MU. In other words, we can find two classes tE , tMU ∈ M̃U⊗E
2
(CP∞), which determine isomorphisms

(π∗E)[b1, b2, . . .][[tE ]] ' (MU⊗E)∗(CP∞) ' (π∗E)[b1, b2, . . .][[tMU]].

In particular, we can write tMU as a power series∑
i≥1

ait
i+1
E

for some coefficients ai ∈ (π∗E)[b1, b2, . . .].

Claim 4. We have ai = bi: that is, we can write tMU = tE + b1t
2
E + b2t

3
E + . . . .

To prove the claim, note that we can think of a class in M̃U⊗E
2
(CP∞) as a map of spectra MU(1) →

MU⊗E. By general nonsense, this is the same thing as a map of E-module spectra from MU(1) ⊗ E to
MU⊗E. Consequently, tE and tMU correspond to a pair of maps φMU, φE : MU(1)⊗ E → MU⊗E.

For every integer i, the class bi ∈ E2i(MU(1)) determines a map of E-modules Σ2iE → MU(1) ⊗ E.
Taking the coproduct, we obtain an equivalence of E-module spectra

⊕i≥0Σ2iE ' MU(1)⊗ E.

Consequently, to describe a map of spectra from MU(1)⊗E to MU⊗E, we just need to specify its restriction
to Σ2iE for every integer i.

The map φE is given by the composition

E ⊗MU(1) λ→ E
u→ E ⊗MU,

where λ classifies the complex orientation of E and u is the unit map E → E ⊗MU. Since the {bi} are
chosen to be the dual basis to {ti+1}, we see that λ vanishes on Σ2iE for i > 0, and restricts to the identity
map Σ2iE ' E when i = 0.

The map φMU is given by smashing with E the canonical map MU(1)→ MU. In particular, φMU can be
identified with the coproduct of the family of maps φiMU : Σ2iE → MU⊗E classified by bi ∈ E2i(MU).

Note that the tensor product MU(1) ⊗ E is acted on by the function spectrum ECP∞ : at the level of
homology, this is given by the action of the cohomology ring E∗(CP∞) on the reduced homology Ẽ∗(CP∞)
(via the cap product). In particular, our complex orientation t induces a map Σ−2(MU(1)⊗E)→ MU(1)⊗E,
which we will denote by T . In terms of our identification MU(1)⊗E ' ⊕i≥0Σ2iE, the map T carries Σ−2Σ2iE
to Σ2(i−1)E by the identity map for i > 0, and is zero otherwise.

It follows that φMU can be written as a formal sum
∑
i φ

i
MU, where φiMU is given by the composition

MU(1)⊗ E T i

→ MU(1)⊗ E λ→ E
bi→ MU⊗E.

In other words, we have the formula
φMU =

∑
i

biφE ◦ T i.
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Identifying φMU and φE with classes in (MU⊗E)0(MU(1)) ' tE(π∗)[b1, . . .][[tE ]], we see that T i is given by
multiplication by tE . It follows that we have

tMU =
∑
i

tiE(bitE) =
∑
i

bit
i+1
E .

This completes the proof of Claim 4.
Let R be the graded-commutative ring π∗(MU⊗E) ' E∗(MU) ' (π∗E)[b1, b2, . . .]. The complex ori-

entations tE and tMU give rise to a pair of formal group laws fE , fMU ∈ R[x, y]. These formal group
laws can be characterized as follows: if π1, π2 : CP∞×CP∞ → CP∞ are the two projection maps and
m : CP∞×CP∞ → CP∞ denotes the multiplication, then we have

m∗tE = fE(π∗1tE , π
∗
2tE) m∗tMU = fMU(π∗1tMU, π

∗
2tMU)

in the cohomology ring (MU⊗E)∗(CP∞). This immediately gives the following result:

Proposition 5. Let E be a complex oriented cohomology theory and let R, fE , fMU ∈ R[[x, y]] be defined as
above. Let g(x) ∈ R[[x]] denote the power series g(x) = x+ b1x

2 + b2x
3 + · · · , so we have the formal identity

tMU = g(tE). Then fMU is given by the formula

fMU(x, y) = g ◦ fE(g−1(x), g−1y).

Specializing to the case where E is an Eilenberg-MacLane spectrum HZ, we deduce:

Corollary 6. Let E = MU⊗HZ, equipped with the complex orientation coming from MU. Then π∗E '
H∗(MU; Z) ' Z[b1, b2, . . .], and the formal group law over Z[b1, b2, . . .] is given by the formula f(x, y) =
g(g−1(x) + g−1(y)), where g(x) = x+ b1x

2 + b2x
3 + . . . .

It follows that the composition L → π∗MU → H∗(MU; Z) is the homomorphism studied in Lecture 2.
We conclude:

Corollary 7. The composite map L→ π∗MU→ H∗(MU; Z) is an isomorphism after tensoring with Q.

Since the Hurewicz map π∗MU→ H∗(MU; Z) is always a rational isomorphism, we deduce the following
baby version of Theorem 1:

Corollary 8. The map L→ π∗MU induces an isomorphism after tensoring with Q.

Since MU is a connective spectrum whose homology groups Hn(MU; Z) are finitely generated, we conclude
that the homotopy groups πn MU are finitely generated abelian groups. Consequently, to prove Theorem
1 holds integrally, it will suffice to show that the map L → π∗MU becomes an isomorphism after p-adic
completion, for every prime number p. We will prove this later in the week, using the Adams spectral
sequence.
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