The Homology of MU (Lecture 7)

February 9, 2010

Last week, we defined the complex bordism spectrum MU and showed that it was a universal complex oriented cohomology theory. In particular, there is a formal group law f(x,y) over the ring π_* MU. This formal group law is classified by a map $L \to \pi_*$ MU, where L is the Lazard ring. Our goal this week is to prove the following fundamental result:

Theorem 1 (Quillen). The map $L \to \pi_* MU$ is an isomorphism. (In particular, the spectrum MU has homotopy groups only in even degrees.)

The obstacle to overcome in the proof of Theorem 1 is that homotopy groups are typically difficult to compute. In this lecture, we will consider the much easier problem of computing the *homology* groups $H_*(MU; \mathbf{Z})$. In fact, we will do something a little more general: namely, we compute the homology $E_*(MU)$, where E is an arbitrary complex oriented cohomology theory.

Since MU is the (homotopy) colimit of the sequence MU(n), we have $E_*(MU) \simeq \varinjlim E_*(MU(n))$. Since every complex vector bundle has a canonical E-orientation, we obtain a canonical isomorphism of $E_*(MU(n))$ with $E_*(BU(n))$. Recall that $E_*(BU(n))$ can be identified with the symmetric power $\operatorname{Sym}^n E_*(BU(1)) = \operatorname{Sym}^n(\pi_*E\{\beta_0,\beta_1,\ldots\})$, where $\{\beta_i\}$ is the dual basis to topological basis $\{t^i\}$ for $E^*(BU(1)) \simeq (\pi_*E)[[t]]$. Correspondingly, we we identify $E_*(MU(n))$ with the symmetric power $\operatorname{Sym}^n E_*(MU(1)) \simeq \operatorname{Sym}^n(\pi_*E\{b_0,b_1,b_2,\ldots\})$, where the $\{b_i\}$ are a dual basis to the basis $\{t^{i+1}\}$ for the cohomology

$$E^*(\mathrm{MU}(1)) \simeq \widetilde{E}^*(\mathbf{CP}^{\infty}) \simeq t(\pi_* E)[[t]] \subseteq (\pi_* E)[[t]] \simeq E^*(\mathbf{CP}^{\infty}).$$

To pass to the bordism spectrum MU, we need to understand the transition maps $E_*(\mathrm{MU}(n)) \to E_*(\mathrm{MU}(n+1))$. These maps are induced by the composition

$$\mathrm{MU}(n) \simeq S \otimes \mathrm{MU}(n) \simeq \mathrm{MU}(0) \otimes \mathrm{MU}(n) \to \mathrm{MU}(1) \otimes \mathrm{MU}(n) \to \mathrm{MU}(n+1).$$

In the case n=0, the inclusion $\mathrm{MU}(0) \to \mathrm{MU}(1)$ induces a map $\pi_*E=E_*(\mathrm{MU}(0)) \to E_*(\mathrm{MU}(1))$, which simply corresponds to the element b_0 in our chosen basis for $E_*(\mathrm{MU}(1))$. We conclude:

• For each $n \geq 0$, the map on homology $\operatorname{Sym}^n(\pi_*E)\{b_0, b_1, \ldots\} \simeq E_*(\operatorname{MU}(n)) \to E_*(\operatorname{MU}(n+1)) \simeq \operatorname{Sym}^{n+1}(\pi_*E)\{b_0, b_1, \ldots\}$ is given by multiplication by the class b_0 .

There is a map of polynomial algebras $(\pi_*E)[b_0,b_1,b_2,\ldots] \to (\pi_*E)[b_1,b_2,\ldots]$ which carries b_0 to 1. This map induces an isomorphism from $\operatorname{Sym}^n(\pi_*E\{b_0,b_1,\ldots\})$ to $\operatorname{Sym}^{\leq n}(\pi_*E\{b_1,b_2,\ldots\})$. Under these isomorphisms, the map $E_*(\operatorname{MU}(n)) \to E_*(\operatorname{MU}(n+1))$ simply corresponds to the inclusion $\operatorname{Sym}^{\leq n}(\pi_*E\{b_1,b_2,\ldots\}) \hookrightarrow \operatorname{Sym}^{\leq n+1}(\pi_*E\{b_1,b_2,\ldots\})$. Passing to the limit as n grows, we obtain the following:

Proposition 2. Let E be a complex oriented cohomology theory, and let $\{b_i\} \subseteq E_*(\mathrm{MU}(1))$ be dual to the topological basis $\{t^{i+1}\}$ for $E^*(\mathrm{MU}(1)) \simeq t(\pi_*E)[[t]]$. Then the images of the b_i in $E_*(\mathrm{MU})$ determine a ring isomorphism $(\pi_*E)[b_1,b_2,\ldots] \simeq E_*(\mathrm{MU})$ (note that the image of b_0 is the identity of $E_*(\mathrm{MU})$).

Corollary 3. There is a canonical isomorphism $H_*(MU; \mathbf{Z}) \simeq \mathbf{Z}[b_1, b_2, \ldots]$.

To use this observation in the proof of Theorem 1, we need to understand the composition $L \to \pi_* \text{MU} \to H_*(\text{MU}; \mathbf{Z}) \simeq \mathbf{Z}[b_1, b_2, \ldots]$ (here the second map is the Hurewicz homomorphism). This map classifies a formal group law over the commutative ring $\mathbf{Z}[b_1, b_2, \ldots]$. We will see in a moment that this is the same formal group law that we studied in Lecture 2.

It will be convenient to again consider a slightly more general problem. Let E be any complex oriented cohomology theory. The smash product $\mathrm{MU} \otimes E$ is another multiplicative cohomology theory, with $\pi_*(\mathrm{MU} \otimes E) = E_*(\mathrm{MU}) \simeq (\pi_* E)[b_1, b_2, \ldots]$. This multiplicative cohomology theory has *two* complex orientations: one coming from our given complex orientation on E, and one from the universal complex orientation on E. In other words, we can find two classes $t_E, t_{\mathrm{MU}} \in \widetilde{\mathrm{MU} \otimes E}^2(\mathbf{CP}^{\infty})$, which determine isomorphisms

$$(\pi_* E)[b_1, b_2, \ldots][[t_E]] \simeq (\text{MU} \otimes E)^* (\mathbf{CP}^{\infty}) \simeq (\pi_* E)[b_1, b_2, \ldots][[t_{\text{MU}}]].$$

In particular, we can write $t_{\rm MU}$ as a power series

$$\sum_{i>1} a_i t_E^{i+1}$$

for some coefficients $a_i \in (\pi_* E)[b_1, b_2, \ldots]$.

Claim 4. We have $a_i = b_i$: that is, we can write $t_{MU} = t_E + b_1 t_E^2 + b_2 t_E^3 + \dots$

To prove the claim, note that we can think of a class in $\widetilde{\mathrm{MU} \otimes E}^2(\mathbf{CP}^{\infty})$ as a map of spectra $\mathrm{MU}(1) \to \mathrm{MU} \otimes E$. By general nonsense, this is the same thing as a map of E-module spectra from $\mathrm{MU}(1) \otimes E$ to $\mathrm{MU} \otimes E$. Consequently, t_E and t_{MU} correspond to a pair of maps $\phi_{\mathrm{MU}}, \phi_E : \mathrm{MU}(1) \otimes E \to \mathrm{MU} \otimes E$.

For every integer i, the class $b_i \in E_{2i}(\mathrm{MU}(1))$ determines a map of E-modules $\Sigma^{2i}E \to \mathrm{MU}(1) \otimes E$. Taking the coproduct, we obtain an equivalence of E-module spectra

$$\bigoplus_{i\geq 0} \Sigma^{2i} E \simeq \mathrm{MU}(1) \otimes E.$$

Consequently, to describe a map of spectra from $\mathrm{MU}(1) \otimes E$ to $\mathrm{MU} \otimes E$, we just need to specify its restriction to $\Sigma^{2i}E$ for every integer i.

The map ϕ_E is given by the composition

$$E \otimes \mathrm{MU}(1) \xrightarrow{\lambda} E \xrightarrow{u} E \otimes \mathrm{MU},$$

where λ classifies the complex orientation of E and u is the unit map $E \to E \otimes MU$. Since the $\{b_i\}$ are chosen to be the dual basis to $\{t^{i+1}\}$, we see that λ vanishes on $\Sigma^{2i}E$ for i > 0, and restricts to the identity map $\Sigma^{2i}E \simeq E$ when i = 0.

The map ϕ_{MU} is given by smashing with E the canonical map $\mathrm{MU}(1) \to \mathrm{MU}$. In particular, ϕ_{MU} can be identified with the coproduct of the family of maps $\phi_{\mathrm{MU}}^i : \Sigma^{2i}E \to \mathrm{MU} \otimes E$ classified by $b_i \in E_{2i}(\mathrm{MU})$. Note that the tensor product $\mathrm{MU}(1) \otimes E$ is acted on by the function spectrum $E^{\mathrm{CP}^{\infty}}$: at the level of

Note that the tensor product $\mathrm{MU}(1)\otimes E$ is acted on by the function spectrum $E^{\mathbf{CP}^{\infty}}$: at the level of homology, this is given by the action of the cohomology ring $E^*(\mathbf{CP}^{\infty})$ on the reduced homology $\widetilde{E}_*(\mathbf{CP}^{\infty})$ (via the cap product). In particular, our complex orientation t induces a map $\Sigma^{-2}(\mathrm{MU}(1)\otimes E)\to \mathrm{MU}(1)\otimes E$, which we will denote by T. In terms of our identification $\mathrm{MU}(1)\otimes E\simeq \oplus_{i\geq 0}\Sigma^{2i}E$, the map T carries $\Sigma^{-2}\Sigma^{2i}E$ to $\Sigma^{2(i-1)}E$ by the identity map for i>0, and is zero otherwise.

It follows that ϕ_{MU} can be written as a formal sum $\sum_{i} \phi_{\text{MU}}^{i}$, where ϕ_{MU}^{i} is given by the composition

$$\mathrm{MU}(1) \otimes E \stackrel{T^i}{\to} \mathrm{MU}(1) \otimes E \stackrel{\lambda}{\to} E \stackrel{b_i}{\to} \mathrm{MU} \otimes E.$$

In other words, we have the formula

$$\phi_{\mathrm{MU}} = \sum_{i} b_{i} \phi_{E} \circ T^{i}.$$

Identifying ϕ_{MU} and ϕ_E with classes in $(\text{MU} \otimes E)^0(\text{MU}(1)) \simeq t_E(\pi_*)[b_1, \ldots][[t_E]]$, we see that T^i is given by multiplication by t_E . It follows that we have

$$t_{\mathrm{MU}} = \sum_{i} t_{E}^{i}(b_{i}t_{E}) = \sum_{i} b_{i}t_{E}^{i+1}.$$

This completes the proof of Claim 4.

Let R be the graded-commutative ring $\pi_*(\mathrm{MU} \otimes E) \simeq E_*(\mathrm{MU}) \simeq (\pi_* E)[b_1, b_2, \ldots]$. The complex orientations t_E and t_{MU} give rise to a pair of formal group laws $f_E, f_{\mathrm{MU}} \in R[x,y]$. These formal group laws can be characterized as follows: if $\pi_1, \pi_2 : \mathbf{CP}^{\infty} \times \mathbf{CP}^{\infty} \to \mathbf{CP}^{\infty}$ are the two projection maps and $m : \mathbf{CP}^{\infty} \times \mathbf{CP}^{\infty} \to \mathbf{CP}^{\infty}$ denotes the multiplication, then we have

$$m^*t_E = f_E(\pi_1^*t_E, \pi_2^*t_E)$$
 $m^*t_{MU} = f_{MU}(\pi_1^*t_{MU}, \pi_2^*t_{MU})$

in the cohomology ring $(MU \otimes E)^*(\mathbb{CP}^{\infty})$. This immediately gives the following result:

Proposition 5. Let E be a complex oriented cohomology theory and let R, f_E , $f_{MU} \in R[[x,y]]$ be defined as above. Let $g(x) \in R[[x]]$ denote the power series $g(x) = x + b_1 x^2 + b_2 x^3 + \cdots$, so we have the formal identity $t_{MU} = g(t_E)$. Then f_{MU} is given by the formula

$$f_{\text{MU}}(x,y) = g \circ f_E(g^{-1}(x), g^{-1}y).$$

Specializing to the case where E is an Eilenberg-MacLane spectrum $H\mathbf{Z}$, we deduce:

Corollary 6. Let $E = \text{MU} \otimes H\mathbf{Z}$, equipped with the complex orientation coming from MU. Then $\pi_*E \simeq H_*(\text{MU};\mathbf{Z}) \simeq \mathbf{Z}[b_1,b_2,\ldots]$, and the formal group law over $\mathbf{Z}[b_1,b_2,\ldots]$ is given by the formula $f(x,y) = g(g^{-1}(x) + g^{-1}(y))$, where $g(x) = x + b_1x^2 + b_2x^3 + \ldots$

It follows that the composition $L \to \pi_* \, \mathrm{MU} \to \mathrm{H}_*(\mathrm{MU}; \mathbf{Z})$ is the homomorphism studied in Lecture 2. We conclude:

Corollary 7. The composite map $L \to \pi_* \operatorname{MU} \to \operatorname{H}_*(\operatorname{MU}; \mathbf{Z})$ is an isomorphism after tensoring with \mathbf{Q} .

Since the Hurewicz map $\pi_* MU \to H_*(MU; \mathbf{Z})$ is always a rational isomorphism, we deduce the following baby version of Theorem 1:

Corollary 8. The map $L \to \pi_* \text{ MU}$ induces an isomorphism after tensoring with Q.

Since MU is a connective spectrum whose homology groups $H_n(\text{MU}; \mathbf{Z})$ are finitely generated, we conclude that the homotopy groups π_n MU are finitely generated abelian groups. Consequently, to prove Theorem 1 holds integrally, it will suffice to show that the map $L \to \pi_*$ MU becomes an isomorphism after p-adic completion, for every prime number p. We will prove this later in the week, using the Adams spectral sequence.