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Fix a prime number p. For any p-local spectrum X, one can arrange its E(n)-localizations into the
chromatic tower

· · · → LE(2)X → LE(1)X → LE(0)X.

Our goal in this lecture and the next is to prove the following result:

Theorem 1 (Chromatic Convergence). If X is a finite p-local spectrum, then X is a homotopy limit of its
chromatic tower.

Remark 2. The collection of p-local spectra which satisfy the conclusion of Theorem 1 is obviously thick.
It therefore suffices to prove Theorem 1 for a single p-local spectrum of type 0: for example, the p-local
sphere).

For every spectrum X, let Cn(X) denote the homotopy fiber of the map X → LE(n)X. Then lim←−Cn(X) is
the homotopy fiber of the map X → lim←−LE(n)X. The chromatic convergence theorem is therefore equivalent
to the following:

Theorem 3. The homotopy limit of the tower {Cn(S(p))} is trivial. Even better: for every integer m, the
tower of abelian groups {πmCn(S(p))} is trivial (as a pro-abelian group).

The starting point for Theorem 3 is the following result, which we will prove in the next lecture:

Proposition 4. Each of the maps Cn(S(p))→ Cn−1(S(p)) induces the zero map MU∗(Cn(S(p)))→ MU∗(Cn−1(S(p)).

Let us assume Proposition 4 and see how it leads to a proof of Theorem 3. To this end, we recall the
definition of the Adams-Novikov filtration on the homotopy groups π∗X of a spectrum X. Let I denote the
homotopy fiber of the unit map S → MU. There is an evident map I → S, which induces a map I⊗m → S
for each m. We say that an element x ∈ πnX has Adams-Novikov filtration ≥ m if x lies in the image of the
map πn(I⊗m ⊗X)→ πnX.

Lemma 5. Let f : X → Y be a map of spectra such that f induces the zero map θ : MU∗(X) → MU∗(Y ).
Then f increases Adams-Novikov filtration. That is, if x ∈ πnX has Adams-Novikov filtration ≥ m, then
f(x) ∈ πnY has Adams-Novikov filtration ≥ m+ 1.

Proof. Lift x to a class x ∈ πn(I⊗m ⊗ X). We then obtain f(x) ∈ πn(I⊗m ⊗ Y ) lifting y. To lift y to
πn(I⊗m+1 ⊗ Y ), it suffices to show that the image of y vanishes in I⊗m ⊗ Y ⊗MU. Consequently, it will
suffice to show that f induces the zero map

θm : MU∗(I⊗m ⊗X)→ MU∗(I⊗m ⊗ Y ).

Recall that MU∗(MU) ' (π∗ MU)[b1, b2, . . .] is a free π∗ MU-module on a basis consisting of monomials in
the bi. It follows that MU∗(ΣI) is a free π∗ MU-module on a basis consisting of monomials of positive length
in the bi. In particular, MU⊗I is a free module over MU, so we have Kunneth decompositions

MU∗(I⊗m ⊗X) = MU∗(I)⊗m ⊗π∗ MU MU∗(X)

MU∗(I⊗m ⊗ Y ) = MU∗(I)⊗m ⊗π∗ MU MU∗(Y )

Since θ = 0, it follows that θm = 0.
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Combining Lemma 5 with Proposition 4, we deduce:

Proposition 6. For all m, n, and s, the image of the map

πnCm+sS(p) → πnCmS(p)

consists of elements having Adams-Novikov filtration ≥ s.

To complete the proof of Theorem 3, it will suffice to show the following:

Proposition 7. For every pair of integers m and n, the Adams-Novikov filtration on πnCm(S(p)) is finite.
That is, there exists an integer s such that every element x ∈ πnCm(S(p)) of Adams-Novikov filtration ≥ s
is trivial.

Let us now introduce some terminology which will be useful for proving Proposition 7.

Definition 8. Let f : X → Y be a map of spectra. We say that f is phantom below dimension n if the
following condition is satisfied: for every finite spectrum F of dimension ≤ n and every map u : F → X, the
composition f ◦ u is nullhomotopic.

Remark 9. The map f is phantom if and only if it is phantom below dimension n, for every integer n.

Definition 10. A spectrum X is MU-convergent if, for every integer n, there exists s such that the map
I⊗s ⊗X → X is phantom below dimension n.

If X is MU-convergent and n, s are as in Definition 10, then the map I⊗s⊗X → X is trivial on πn and so
every element of πnX having Adams-Novikov filtration ≥ s is zero. Proposition 7 is therefore a consequence
of the following:

Proposition 11. Let X be any connective spectrum. Then Cm(X) is MU-convergent for each m ≥ 0.

We need a few preliminary observations.

Lemma 12. Let f : X → Y phantom below dimension n, and let W be a connective spectrum. Then the
induced map X ⊗W → Y ⊗W is phantom below dimension n.

Proof. Let F be a finite spectrum of dimension ≤ n and consider a map u : F → X ⊗W . We wish to prove
that (f ⊗ idW ) ◦ u is nullhomotopic. We can write W as a filtered colimit of finite connective spectra Wα.
Since F is finite, u factors through X ⊗Wα for some α. Replacing W by Wα, we may assume that W is
finite. In this case, we can identify u with a map v : DW ⊗ F → X. Since W is connective, DW ⊗ F has
dimension ≤ n; it follows that f ◦ v is nullhomotopic so that (f ⊗ idW ) ◦ u is nullhomotopic.

Lemma 13. Suppose we are given a fiber sequence of spectra

X → Y → Z.

If X and Z are MU-convergent, then Y is MU-convergent.

Proof. Fix an integer n, and choose s such that the maps I⊗s ⊗X → X and K⊗s ⊗ Z → Z are phantom
below n. We will show that the map I⊗2s ⊗ Y → Y is phantom below n. Let F be a finite spectrum of
dimension ≤ n with a map u : F → I⊗2s ⊗ Y . Since I⊗2s ⊗ Z → I⊗s ⊗ Z is phantom below n (Lemma 12),
the composite map

F → I⊗2s ⊗ Y → I⊗2s ⊗ Z → I⊗s ⊗ Z

is nullhomotopic. It follows that the composition

F ⊗ I⊗2s ⊗ Y → I⊗s ⊗ Y
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factors through some map v : F → I⊗s ⊗X. Then the composition

F
u→ I⊗2s ⊗ Y → Y

is given by
F

v→ I⊗s ⊗X → X → Y

and is therefore nullhomotopic.

Lemma 14. Let X be an MU-module spectrum. Then X is MU-convergent.

Proof. The unit map X → MU⊗X admits a section, given by the action of MU(p) on X. This is equivalent
to the statement that the map I ⊗X → X is nullhomotopic (and hence phantom below n, for any n).

Lemma 15. Let X be any spectrum. For each n ≥ 0, the spectrum LE(n)X is MU-convergent.

Proof. Let X• = E(n)⊗(•+1) ⊗X and let {TotmX•} be the E(n)-based Adams tower of X. The proof of
the smash product theorem shows that {TotmX•} is equivalent to the constant tower with value LE(n)X. It
follows that LE(n)X is a retract of TotmX• for some m. It therefore suffices to show that each TotmX• is
MU-convergent. Each TotmX• is a finite homotopy inverse limit of the spectra Xk; by Lemma 13 it suffices
to show that each Xk is MU-convergent. But Xk ' E(n)⊗k+1 ⊗ X has the structure of an E(n)-module
spectrum. Since E(n) is complex orientable, there is a map of ring spectra MU→ E(n) so that Xk admits
an MU-module structure; the desired result now follows from Lemma 14.

Lemma 16. Let X be a connective spectrum. Then X is MU-convergent.

Proof. We claim that for any finite CW complex F of dimension ≤ n and any map u : F → I⊗n+1 ⊗ X,
the composite map u : F → I⊗n+1 ⊗ X → X is nullhomotopic. In fact, u itself is nullhomotopic, because
I⊗n+1 ⊗X is n-connected. To check this, we note that since X is connective it suffices to show that K is
connected: that is, we have πiK ' 0 for i ≤ 0. This follows from the long exact sequence associated to the
fiber sequence

I → S → MU,

since the map πiS → MU is bijective for i ≤ 0 and surjective when i = 1.

Proof of Proposition 11. Let X be a connective spectrum. We have a fiber sequence

Cn(X)→ X → LE(n)X

where X is MU-convergent by Lemma 16 and LE(n)(X) is MU-convergent by Lemma 15. It follows from
Lemma 13 that Cn(X) is MU-convergent.
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