The Chromatic Convergence Theorem (Lecture 32)

April 20, 2010

Fix a prime number p. For any p-local spectrum X, one can arrange its E(n)-localizations into the
chromatic tower
-+ — LgoyX — Lg1)X — Lgo)X.
Our goal in this lecture and the next is to prove the following result:

Theorem 1 (Chromatic Convergence). If X is a finite p-local spectrum, then X is a homotopy limit of its
chromatic tower.

Remark 2. The collection of p-local spectra which satisfy the conclusion of Theorem 1 is obviously thick.
It therefore suffices to prove Theorem 1 for a single p-local spectrum of type 0: for example, the p-local
sphere).

For every spectrum X, let C,,(X) denote the homotopy fiber of the map X — Lp(,)X. Then lim Cn(X) is
the homotopy fiber of the map X — lln LgnyX. The chromatic convergence theorem is therefore equivalent
to the following:

Theorem 3. The homotopy limit of the tower {C,,(S(,))} is trivial. Even better: for every integer m, the
tower of abelian groups {m,Cpn(S)} is trivial (as a pro-abelian group).
The starting point for Theorem 3 is the following result, which we will prove in the next lecture:
Proposition 4. Each of the maps C,,(S(p)) — Cn—1(S(p)) induces the zero map MU, (Cp(Sp))) — MU (Cr—1(S@))-

Let us assume Proposition 4 and see how it leads to a proof of Theorem 3. To this end, we recall the
definition of the Adams-Nowvikov filtration on the homotopy groups 7, X of a spectrum X. Let I denote the
homotopy fiber of the unit map S — MU. There is an evident map I — S, which induces a map I®™ — §
for each m. We say that an element x € m, X has Adams-Novikov filtration > m if x lies in the image of the
map 7, ([®" @ X) — 7, X.

Lemma 5. Let f : X — Y be a map of spectra such that f induces the zero map 6 : MU, (X) — MU, (Y).
Then f increases Adams-Novikov filtration. That is, if x € m, X has Adams-Novikov filtration > m, then
f(z) € mp,Y has Adams-Novikov filtration > m + 1.

Proof. Lift x to a class T € m,(I®™ @ X). We then obtain f(Z) € 7,(I®™ ® Y) lifting y. To lift y to
T, (I®™T @Y), it suffices to show that the image of ¥ vanishes in 1™ ® Y ® MU. Consequently, it will
suffice to show that f induces the zero map

O : MU, (I®™ @ X) — MU, (I®™ @ Y).

Recall that MU, (MU) ~ (7. MU)[by,ba,...] is a free m, MU-module on a basis consisting of monomials in
the b;. It follows that MU, (XT) is a free m, MU-module on a basis consisting of monomials of positive length
in the b;. In particular, MU ®1I is a free module over MU, so we have Kunneth decompositions

MU, (I @ X) = MU, (I)®™ @, yu MU, (X)
MU, (I®" @ Y) = MU, (I)®™ @ vy MU, (Y)
Since 6 = 0, it follows that 6,, = 0. O



Combining Lemma 5 with Proposition 4, we deduce:
Proposition 6. For all m, n, and s, the image of the map
TuCm+sS(p) = TnCmS(p)
consists of elements having Adams-Novikov filtration > s.

To complete the proof of Theorem 3, it will suffice to show the following;:

Proposition 7. For every pair of integers m and n, the Adams-Novikov filtration on m,Cy,(S()) is finite.
That is, there exists an integer s such that every element x € 1,Cp(Sp)) of Adams-Novikov filtration > s
ts trivial.

Let us now introduce some terminology which will be useful for proving Proposition 7.

Definition 8. Let f : X — Y be a map of spectra. We say that f is phantom below dimension n if the
following condition is satisfied: for every finite spectrum F of dimension < n and every map u : F — X, the
composition f o u is nullhomotopic.

Remark 9. The map f is phantom if and only if it is phantom below dimension n, for every integer n.

Definition 10. A spectrum X is MU-convergent if, for every integer n, there exists s such that the map
I®% ® X — X is phantom below dimension n.

If X is MU-convergent and n, s are as in Definition 10, then the map I®*® X — X is trivial on 7, and so
every element of 7, X having Adams-Novikov filtration > s is zero. Proposition 7 is therefore a consequence
of the following:

Proposition 11. Let X be any connective spectrum. Then Cp,(X) is MU-convergent for each m > 0.
We need a few preliminary observations.

Lemma 12. Let f : X — Y phantom below dimension n, and let W be a connective spectrum. Then the
induced map X @ W — Y @ W is phantom below dimension n.

Proof. Let F be a finite spectrum of dimension < n and consider a map u : FF — X @ W. We wish to prove
that (f ® idw ) o w is nullhomotopic. We can write W as a filtered colimit of finite connective spectra W,.
Since F' is finite, u factors through X ® W, for some «a. Replacing W by W, we may assume that W is
finite. In this case, we can identify v with a map v : DW ® F — X. Since W is connective, DW ® F' has
dimension < n; it follows that f o v is nullhomotopic so that (f ® idw ) o w is nullhomotopic. O

Lemma 13. Suppose we are given a fiber sequence of spectra
X-Y -7

If X and Z are MU-convergent, then Y is MU-convergent.

Proof. Fix an integer n, and choose s such that the maps I®* ® X — X and K®* ® Z — Z are phantom
below n. We will show that the map I®** @ Y — Y is phantom below n. Let F be a finite spectrum of
dimension < n with a map u: F — I®?* ® Y. Since I®?* ® Z — I®* ® Z is phantom below n (Lemma 12),
the composite map

FoI®Y 519075107

is nullhomotopic. It follows that the composition

FRI®*®QY - I%°QY



factors through some map v : F — I®* ® X. Then the composition
FLI9%QY Y

is given by
FLI%®gX>X—>Y

and is therefore nullhomotopic. O
Lemma 14. Let X be an MU-module spectrum. Then X is MU-convergent.

Proof. The unit map X — MU ®X admits a section, given by the action of MU(,) on X. This is equivalent
to the statement that the map I ® X — X is nullhomotopic (and hence phantom below n, for any n). [

Lemma 15. Let X be any spectrum. For each n >0, the spectrum L)X is MU-convergent.

Proof. Let X* = E(n)®*t) @ X and let {Tot™ X*} be the F(n)-based Adams tower of X. The proof of
the smash product theorem shows that {Tot™ X*} is equivalent to the constant tower with value Lg,y) X. It
follows that Lp,)X is a retract of Tot™ X*® for some m. It therefore suffices to show that each Tot™ X* is
MU-convergent. Each Tot™ X* is a finite homotopy inverse limit of the spectra X*; by Lemma 13 it suffices
to show that each X" is MU-convergent. But X* ~ E(n)®**! ® X has the structure of an E(n)-module
spectrum. Since E(n) is complex orientable, there is a map of ring spectra MU — E(n) so that X* admits
an MU-module structure; the desired result now follows from Lemma 14. O]

Lemma 16. Let X be a connective spectrum. Then X is MU-convergent.

Proof. We claim that for any finite CW complex F of dimension < n and any map u : F — I®"T1 @ X,
the composite map u : F — I®"*t! ©® X — X is nullhomotopic. In fact, u itself is nullhomotopic, because
1"l © X is n-connected. To check this, we note that since X is connective it suffices to show that K is
connected: that is, we have m; K ~ 0 for ¢ < 0. This follows from the long exact sequence associated to the
fiber sequence

I — S — MU,

since the map m;S — MU is bijective for ¢ < 0 and surjective when i = 1. O
Proof of Proposition 11. Let X be a connective spectrum. We have a fiber sequence
Cn(X) = X — LgmX

where X is MU-convergent by Lemma 16 and Lg,)(X) is MU-convergent by Lemma 15. It follows from
Lemma 13 that C,(X) is MU-convergent. O



