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Throughout this lecture, we fix a ring spectrum E. We will assume for simplicity that E is a structured
ring spectrum. To any spectrum X, we can associate the cosimplicial ring spectrum [n] 7→ X⊗E⊗n+1, which
we will denote by X•. The homotopy inverse limit of X• is called its totalization and denoted Tot(X•). It
is given as an inverse limit of partial totalizations

· · · → Tot2(X•)→ Tot1(X•)→ Tot0(X•) ' X ⊗ E,

called the Adams tower for X with respect to E. There is a canonical map X → Tot(X•). We ask how
closely this map approximates a homotopy equivalence.

The first observation is that X• depends only on the localization LEX: any E-homology equivalence
X → Y induces a homotopy equivalence of cosimplicial spectra X• → Y •. On the other hand, TotX• is a
homotopy inverse limit of E-modules, and is therefore automatically E-local. The best possible situation,
then, is that TotX• is an E-localization of X: equivalently, the map X → TotX• induces an isomorphism
in E-homology. This is equivalent to the assertion that E ⊗X → E ⊗ (TotX•) is a homotopy equivalence.
The right hand side also admits a map to Tot(E ⊗X•). The augmented cosimplicial object [n] 7→ E ⊗X ⊗
(E⊗(n+1)) is split: that is, it admits an extra codegeneracy map. It follows formally that the composite map

E ⊗X → E ⊗ TotX• → Tot(E ⊗X•)

is a homotopy equivalence. Consequently, we obtain the following:

Proposition 1. Let E be a structured ring spectrum and X a spectrum. Then the canonical map X → TotX•

exhibits TotX• as an E-localization of X if and only if E ⊗ TotX• ' Tot(E ⊗X•).

Note that Tot(E⊗X•) ' lim←−Totn(E⊗X•). Each partial totalization Totn is given by a finite homotopy
inverse limit, and therefore commutes with smash products. It follows that Tot(E ⊗X•) can be identified
with lim←−E⊗Totn(X•). Consequently, the condition of Proposition 1 can be restated as follows: the canonical
map

E ⊗ lim←−Totn(X•)→ lim←−E ⊗ Totn(X•)

is a homotopy equivalence.
To understand this condition better, it is convenient to work in the setting of pro-spectra. A pro-spectrum

is a formal inverse limit “ lim←−X
′′
α of a filtered diagram of spectra (for our needs, it will be sufficient to consider

inverse limits of towers). Morphism spaces are computed by the formula

Map(“ lim←−X
′′
α, “ lim←−Y

′′
β ) = lim←−

β

lim−→
α

Map(Xα, Yβ).

The collection of all pro-spectra form a homotopy theory, which we will denote by Pro(Sp). There is a
forgetful functor U : Pro(Sp)→ Sp, which carries a diagram “ lim←−X

′′
α to its homotopy inverse limit lim←−Xα.

We say that a pro-spectrum “ lim←−X
′′
α is constant if, in Pro(Sp), it is homotopy equivalent to a constant tower

· · ·X → X → X.
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In this case, we have a canonical equivalence lim←−Xα ' X.
If “ lim←−X

′′
α is a pro-spectrum and E is any spectrum, then we can define a new prospectrum E⊗“ lim←−X

′′
α =

“ lim←−E ⊗X
′′
α. We then have a natural map E ⊗U(′′lim←−X

′′
α)→ U(E ⊗ “ lim←−X

′′
α). This map is not always an

equivalence, but it is obviously an equivalence when “ lim←−X
′′
α is constant. Applying this to our situation, we

obtain the following:

Proposition 2. The equivalent conditions of Proposition 1 are satisfied whenever the tower

· · · → Tot2X• → Tot1X• → Tot0X•

is constant as a pro-spectrum.

Consequently, it is of interest for us to have a criterion for determining when a tower of spectra

· · · → Y (2)→ Y (1)→ Y (0)

is constant as a pro-spectrum. Recall that any such tower determines a spectral sequence {Ep,qr , dr}, which
(in good cases) converges to πq lim←−Y (n). Our goal is to establish the following criterion (a very imprecise
version of a criterion of Bousfield):

Proposition 3 (Bousfield). Let · · · → Y (2)→ Y (1)→ Y (0) be a tower of spectra. Suppose that there exists
an integer s ≥ 1 with the following property: for every finite spectrum F , if {Ep,qr , dr} is the spectral sequence
associated to the tower

· · · → F ⊗ Y (2)→ F ⊗ Y (1)→ F ⊗ Y (0),

then the groups Ep,qs vanish for p ≥ s. Then the tower · · · → Y (2) → Y (1) → Y (0) is constant as a
pro-object.

To prove Proposition 3, we begin by fixing a tower of spectra

· · ·Y (2)→ Y (1)→ Y (0)

and assume that the associated spectral sequence {Ep,qr } satisfies Ep,qs ' 0 for p ≥ s. To exploit this
hypothesis, we need to recall the details of the definition of the spectral sequence {Ep,qr , dr}. For m ≤ n let
F (m,n) denote the homotopy fiber of the map Y (n)→ Y (m) (here we adopt the convention that Y (m) ' 0
for m < 0). Then Ep,qr is defined as the image of the map πqF (p + r − 1, p − 1) → πqF (p, p − r), and the
differential dr carries Ep,qr into Ep+r,q−1

r . If p < 0, then F (p, p− r) is contractible so that Ep,qr automatically
vanishes. If p ≥ s, then Ep,qr vanishes for r ≥ s by assumption. It follows that if r ≥ s, then at least one of
the groups Ep,qr and Ep+r,q−1

r vanishes, so that the differential dr is identically zero. This proves:

(∗) The groups Ep,qr are independent of r for r ≥ s. That is, the spectral sequence {Ep,qr , dr} collapses at
the s-page.

Now suppose r > p. Since F (p, p− r) ' Y (p), we have πqF (p, p− r) ' πqY (p). In this case, Ep,qr is the
image of the composite map

πqF (p+ r − 1, p− 1)→ πqY (p+ r − 1)→ πqY (p).

The image of the first map is the kernel of the map πqY (p+ r − 1)→ πqY (p− 1). We therefore have:

(∗′) For r > p, the group Ep,qr is the intersection Im(πqY (p+r−1)→ πqY (p))∩ker(πqY (p)→ πqY (p−1)).

Combining (∗) and (∗′), we deduce:

(∗′′) The intersection Im(πqY (p + r) → πqY (p)) ∩ ker(πqY (p) → πqY (p − 1) is independent of r, provided
that r ≥ p, s.
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Lemma 4. For every integer k ≥ 0, the intersection Im(πqY (p+ r)→ πqY (p))∩ker(πqY (p)→ πqY (p− k))
is independent of r, provided that r ≥ p, s.

Proof. We use induction on k. The case k = 0 is trivial, so assume that k > 0. Suppose that r ≥ p, s, and
that x ∈ πqY (p + r) has trivial image in πqY (p − k). Let y ∈ πqY (p) be the image of x; we wish to show
that y lifts to πqY (p + r + 1). Let y′ denote the image of y in πqY (p − 1). Then y′ belongs the kernel of
the map πqY (p− 1)→ πqY (p− k). Since y′ lifts to πqY (p+ r), the inductive hypothesis implies that y′ can
be lifted to an element x′ ∈ πqY (p+ r + 1). Subtracting the image of x′ from x, we can reduce to the case
y′ = 0. Then y ∈ ker(πqY (p)→ πqY (p− 1)), and the desired result follows from (∗′′).

Taking k = p+1 in Lemma 4, we deduce that the image of the map π∗Y (p+ r)→ π∗Y (p) is independent
of r, so long as r ≥ p, s. Let us denote this image by A(p)∗. By construction, we have a sequence of
surjections

· · ·A(3)∗ → A(2)∗ → A(1)∗ → A(0)∗.

By construction, each of these surjections fits into a short exact sequence

0→ Ep,∗∞ → A(p)∗ → A(p− 1)∗ → 0

By assumption, the groups Ep,∗∞ vanish for p ≥ s. We deduce:

(∗′′′) The maps A(p)∗ → A(p′)∗ are isomorphisms for p ≥ p′ ≥ s.

Let us now consider the tower of graded abelian groups

· · · → π∗Y (4s) θ2→ π∗Y (2s) θ1→ π∗Y (s).

For m ≥ 0, let K(m)∗ ⊆ π∗Y (2ms) be the kernel of the map θm. Note that K(m)∗ ∩ A(2ms)∗ = 0,
since each θm induces an isomorphism A(2ms)∗ → A(2m−1s)∗. For any class x ∈ π∗Y (2ms), the image
θm(x) ∈ A(2m−1s)∗, so that θm(x) = θm(x′) for some x′ ∈ A(2ms)∗. It follows that x = x′ + x′′, where
x′ ∈ A(2ms)∗ and x′′ ∈ K(m)∗. In other words, for m ≥ 1 we have a direct sum decomposition

π∗Y (2ms) ' A(2ms)∗ ⊕K(m)∗.

It follows that, as a pro-object in graded abelian groups, the tower {π∗Y (2ms)} is equivalent to the constant
group A(s)∗.

Let Y = lim←−Y (p) ' lim←−m Y (2ms). The Milnor exact sequence

0→
1

lim←−π∗+1Y (p)→ π∗Y → lim←−π∗Y (p)→ 0

gives π∗Y ' A(s)∗. For each integer p ≥ 0, let Y (p)/Y denote the cofiber of the canonical map Y → Y (p).
It follows that the maps π∗Y (2ms)→ π∗Y (2ms)/Y induce a composite isomorphism

K(m)∗ ⊆ π∗Y (2ms)→ π∗Y (2ms)/Y.

We conclude that the tower of spectra

· · · → Y (4s)/Y → Y (2s)/Y → Y (s)/Y

has the following property: each map in the tower is trivial on all homotopy groups.
Let us now return to the setting of Proposition 3: that is, we assume that the spectral sequence {Ep,qr , dr}

has vanishing Ep,qs for p ≥ s not only for the tower {Y (p)}, but also for {Y (p)⊗F} for every finite spectrum
F . The same reasoning shows that the maps

· · · → (Y (4s)/Y )∗ → (Y (2s)/Y )∗F → (Y (s)/Y )∗F

are zero. In other words, each of the maps Y (2ms)/Y → Y (2m−1s)/Y is a phantom.
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Lemma 5. A composition of two phantom maps is zero.

Proof. Fix a spectrum X, and consider a map u :
⊕
Fα → X, where the sum ranges over all homotopy

equivalence classes of maps from finite spectra into X. Using the argument given in Lecture 17, we see that
the homotopy fiber X ′ of u is equivalent to a retract of a sum of finite spectra. Now suppose we are given
phantom maps f : X → Y and g : Y → Z. Since f is a phantom, f ◦ u ' 0 and therefore f is equivalent to
a composition X → ΣX ′ → Y . Consequently, g ◦ f factors through the composition ΣX ′ v→ Y

g→ Z. Since
g is a phantom and ΣX ′ is a retract of a sum of finite spectra, the composition g ◦ v is nullhomotopic and
therefore g ◦ f ' 0.

Applying this to our situation, we deduce that the maps

· · · → Y (16s)/Y → Y (4s)/Y → Y (s)/Y

are nullhomotopic, so that the pro-spectrum {Y (p)/Y } is trivial. This proves that the tower {Y (p)} is
equivalent (as a pro-spectrum) to the constant spectrum Y .
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