
Lazard’s Theorem (Continued) (Lecture 3)

January 28, 2010

Our goal in this lecture is to complete the proof of Lazard’s theorem. In the last lecture, we were reduced
to proving the following result:

Lemma 1. Let φ : L→ Z[b1, b2, . . .] be the ring homomorphism classifying the formal group law g(g−1(x) +
g−1(y)), where g is the power series g(x) = x + b1x

2 + b2x
3 + · · · . Let I ⊆ L be the ideal consisting of

elements of positive degree, and let J ⊆ Z[b1, b2, . . .] be defined likewise. Then, for every integer n > 0, φ
induces an injection (I/I2)2n → (J/J2)2n ' Z. The image of this map is pZ if n+ 1 is a prime power pf ,
and Z otherwise.

We regard n as a positive integer which is fixed throughout this lecture. Recall that for any commutative
ring R, there is a canonical bijection ε : Hom(L,R) → FGL(R), where FGL denotes the collection of
formal group laws f(x, y) ∈ R[[x, y]] over R. Suppose now that R is a graded ring, and let Homgr(L,R) ⊆
Hom(L,R) denote the collection of all graded ring homomorphisms from L to R. Then ε restricts to a
bijection Homgr(L,R) ' FGLgr(R), where FGLgr(R) denotes the collection of formal group laws f(x, y) =∑
ai,jx

iyj ∈ R[[x, y]] where the coefficients ai,j have degree 2(i + j − 1) (in other words, the collection of
all formal group laws where f(x, y) is homogeneous of degree −2, when we regard the variables x and y as
having degree −2).

The main point of Lemma 1 is to show that the abelian group (I/I2)2n is isomorphic to Z: in other words,
that it is free on one generator. Equivalently, we wish to show that for any abelian group M , the collection
of group homomorphisms Hom((I/I2)2n,M) can be identified with M . Let us denote this collection of group
homomorphisms by F (M): that is, we let F be the functor corepresented by (I/I2)2n (from the category
of abelian groups to the category of sets). To proceed further, we would like to relate F to the functor
corepresented by L. To this end, let us regard Z⊕M as a graded commutative ring, with the “square zero”
multiplication law (a,m)(b,m′) = (ab, am′ + bm) and the grading

(Z⊕M)k =


Z if k = 0
M if k = 2n
0 otherwise.

Unwinding the definitions, we see that evaluation in degree 2n induces a bijection Homgr(L,Z ⊕ M) →
Hom((I/I2)2n,M) = F (M). In other words, F (M) can be identified with the set FGLgr(Z⊕M) of (homo-
geneous) formal group laws over Z⊕M . Any such formal group law can be written in the form

f(x, y) = x+ y +
∑

i+j=n+1

mi,jx
iyj .

In order for such a polynomial to define a formal group law, the coefficients mi,j need to satisfy some
conditions. Since the multiplication on Z ⊕M is square-zero, it is possible to make these conditions very
explicit. For example, the requirement that f(x, 0) = f(0, x) = x translates into equations m0,n+1 =
mn+1,0 = 0, while the commutativity of f is the requirement mi,j = mj,i. Associativity is only slightly more
complicated: we require that for every triple of integers i, j, and k, the coefficient of xiyjzk appearing in the
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expressions f(f(x, y), z) and f(x, f(y, z)) are the same. This follows immediately from the earlier conditions
if i, j, or k is equal to zero. If i, j, k > 0, then a simple computation (using the fact that M2 = 0) shows that
the coefficient in f(f(x, y), z) is given by

(
i+j
j

)
mi+j,k if i+ j + k = n+ 1 (and is zero otherwise). Similarly,

the relevant coefficient in f(x, f(y, z)) is given by
(
j+k
j

)
mi,j+k. We can summarize our discussion as follows:

Lemma 2. The functor F carries an abelian group M to the collection of all sequences {mi,j ∈M}i+j=n+1

satisfying the conditions
m0,n+1 = mn+1,0 = 0 mi,j = mj,i(

i+ j

j

)
mi+j,k =

(
j + k

j

)
mi,j+k if i, j, k > 0.

We want to understand how to find all solutions to the equations appearing in Lemma 2. We can start
by considering the solutions that we get using the homomorphism φ : L→ Z[b1, b2, . . .] appearing in Lemma
1. This homomorphism induces a map (I/I2)2n → (J/J2)2n ' Z, and therefore gives rise to a map

λ : M = Hom(Z,M)→ Hom((J/J2)2n,M)→ Hom((I/I2)2n,M) = F (M).

To understand this map more explicitly, we note that M ' Hom((J/J2)2n,M) can be identified with
Homgr(Z[b1, b2, . . .],Z⊕M) by assigning to each m ∈ M the ring homomorphism ψm : Z[b1, . . .] → Z⊕M
which carries bn to m and all other bi to zero. In this case, the change-of-variable transformation g(x) =
x+ b1x

2 + · · · can be written as g(x) = x+mxn+1. Since m2 = 0 in Z⊕M , the inverse transformation is
simply given by g−1(x) = x−mxn+1. Then g defines the formal group law

f(x, y) = g(g−1(x) + g−1(y)) = g(x−mxn+1 + y −myn+1) = x+ y +m((x+ y)n+1 − xn+1 − yn+1).

We conclude that the map λ : M → F (M) carries an element m ∈ M to the sequence {mi,j}i+j=n+1 given
by

mi,j =

{
0 if i = 0 or j = 0(
n+1
i

)
m otherwise.

These are the “obvious” solutions to the equations of Lemma 2.
But sometimes there are more solutions. For example, if the binomial coefficients {

(
n+1
i

)
}0<i<n+1 have

greatest common divisor d, then we can write down another solution given by

mi,j =

{
0 if i = 0 or j = 0
(n+1

i )
d m otherwise.

It is therefore of interest to determine d. For this, we will need the following combinatorial fact:

Lemma 3. Let p be a prime number, and suppose that a and b are nonnegative integers with base p expansions

a =
∑

aip
i b =

∑
bip

i

Then
(
a
b

)
is congruent to the product

∏(ai

bi

)
modulo p.

Proof. Let S be a set of size a. We can partition S into subsets Sα whose sizes are powers of p, with exactly
ai subsets of size pi. Regard each Sα as acted on by the cyclic group Gα = Z/piZ. These actions together
determine an action of G =

∏
αGα on S. Let T be the collection of all b-element subsets of S, so that(

a
b

)
= |T |. The set T is acted on by G. Since G is a p-group, every nontrivial orbit of G has size divisible

by p. Thus |T | is congruent modulo p to the cardinality of TG, the set of G-fixed points of T . Note that a
G-fixed point of T is a subset S0 ⊆ S of cardinality b which is a union of some of the subsets Sα. There are
precisely

∏(ai

bi

)
ways that these subsets can be chosen.
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Corollary 4. Let i and j be nonnegative integers, and let p be a prime number. Then the binomial coefficient(
i+j
i

)
is not divisible by p if and only if each digit in the base p expansion of i+ j is at least as large as the

corresponding digit of i in base p: in other words, if and only if the sum i + j can be computed in base p
“without carrying”.

Corollary 5. Let d be the greatest common divisor of the binomial coefficients {
(
n+1
i

)
}0<i<n+1. Then

d =

{
p if n+ 1 = pf

1 otherwise.

Proof. If n+ 1 is not a power of p, then we can nontrivially decompose n+ 1 as a sum i+ j, where the sum
of i and j is computed in base p without carrying; it follows that

(
n+1
i

)
is not divisible by p. If n+ 1 = pf ,

then there is no such decomposition, so that p is a common divisor of {
(
n+1
i

)
}0<i<n+1. To see that it is the

greatest common divisor, we note that p2 does not divide the binomial coefficient
(
pf

pf−1

)
.

We let λ′ : M → F (M) be the map which carries m ∈M to the sequence

mi,j =

{
0 if i = 0 or j = 0
(n+1

i )
d m otherwise.

We will prove the following:

Proposition 6. The map λ′ is an isomorphism.

It follows from Proposition 6 that the functor F (M) is corepesentable by the abelian group Z: that is,
we get an isomorphism (I/I2)2n ' Z. Moreover, the map λ factors as a composition

M
d→M

λ′→ F (M),

so that the map
Z ' (I/I2)2n → (J/J2)2n ' Z

is given by multiplication by d. This completes the proof of Lemma 1.
To prove Proposition 6, it suffices to show that λ′ induces an isomorphism M(p) → F (M)(p) ' F (M(p))

after localizing at every prime p. In other words, we may assume that M is a Z(p)-module.

Lemma 7. Let {mi = mi,j}i+j=n+1 be an element of F (M). Then:

(a) If mi = 0, then mn+1−i = 0.

(b) If mi = 0 and the sum i+ j is computed in base p without carrying, then mi+j = 0 vanishes.

Proof. Assertion (a) follows by symmetry. To prove (b), we use the associativity formula(
n+ 1− i

j

)
mi =

(
i+ j

j

)
mi+j .

If mi vanishes, then the left hand side vanishes, so (since
(
i+j
j

)
is not divisible by p, by Corollary 4) we

conclude that mi+j vanishes.

Proof of Proposition 6 when n+ 1 = pf . Let χ : F (M) → M be given by extracting the coefficient mpf−1 .

Then the composition χ ◦ λ′ : M → M is given by multiplication by
( pf

pf−1)
p , which is not divisible by p.

Consequently, χ ◦ λ′ is an isomorphism, which proves that λ′ is injective. To show that λ′ is surjective, it
suffices to show that χ is injective. Let {mi} ∈ F (M) belong to the kernel of χ, so that mpf−1 vanishes. Part
(b) of Lemma 7 shows that mk vanishes for pf−1 ≤ k < pf . Using symmetry, we deduce that mk vanishes
for all 0 < k < pf .
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Proof of Proposition 6 when n+ 1 6= pf . Let pe be the largest power of p which divides n + 1. We let
χ : F (M)→M be given by extracting the coefficient of mpe . Then χ◦λ′ : M →M is given by multiplication

by (n+1
pe )
d ; here d is either 1 or some prime distinct from p, and the binomial coefficient

(
n+1
pe

)
is not divisible

by p by Corollary 4. As before, we deduce that χ ◦ λ′ is an isomorphism, λ′ is injective, and we are reduced
to proving that χ is injective. Suppose that {mi} ∈ F (M) belongs to the kernel of χ. Then mpe = 0.

Assume e > 0 (if not, ignore this step). By symmetry, we get mn+1−pe = 0. Since n + 1 − pe−1 can be
obtained as a sum of n+ 1− pe and (p− 1)pe−1 in base p without carrying, we deduce that mn+1−pe−1 = 0.
By symmetry, we get mpe−1 = 0.

Now choose any nontrivial decomposition n + 1 = i + j. We wish to prove that mi = mj = 0. Since
n+ 1 has a nontrivial coefficient on pe in its base p expansion, we conclude that either i or j must contain a
nonzero coefficient on pe or pe−1 in its base p expansion. Without loss of generality, we may suppose that i
has a nonzero pa coefficient in its base p-expansion, with a ∈ {e− 1, e}. Then we can write i = pa + (i− pa)
in base p without carrying. Since mpa vanishes by the above argument, we conclude from Lemma 7 that
mi = 0.
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