The Periodicity Theorem (Lecture 27)

April 27, 2010

Let p be a prime number, fixed throughout this lecture. In the last lecture, we asserted that for every integer $n \ge 0$, there exists a finite p-local spectrum X of type n. If n = 0, this just means that the rational homology $H_*(X; \mathbf{Q})$ is nonzero. We can achieve this by taking X to be the p-local sphere $S_{(p)}$.

When n = 1, we can define X to be the mod p Moore spectrum, which is defined by the cofiber sequence

$$S \xrightarrow{p} S \to X.$$

This has no rational homology. However, since multiplication by p annihilates $K(1)_*(S) \simeq \mathbf{F}_p[v_1^{\pm 1}]$, the map $K(1)_*(S) \to K(1)_*X$ is injective. In particular, $K(1)_*(X) \neq 0$, so that X has type 1.

For n > 1, it is somewhat harder to construct spectra of type n. We can try to mimic the previous construction. Namely, suppose that we are given a spectrum X of type n. We might try to find a self map $f: \Sigma^k X \to X$ so that we can form a cofiber sequence

$$\Sigma^k X \xrightarrow{f} X \to X/f,$$

and hope that X/f has type n + 1. It is clear that X/f has type $\ge n$. To guarantee that X/f has type exactly n + 1, we need to know two things:

- (1) The K(n)-homology of X/f vanishes: in other words, f induces an isomorphism from $K(n)_*X$ to itself.
- (2) The K(n + 1)-homology of X/f does not vanish: that is, f does not induce an isomorphism from $K(n + 1)_*X$ to itself.

This motivates the following definition:

Definition 1. Let X be a p-local finite spectrum, and let $n \ge 1$. A v_n -self map is a map $f : \Sigma^k X \to X$ with the following properties:

- (a) f induces an isomorphism $K(n)_*X \to K(n)_*X$.
- (b) For $m \neq n$, the induced map $K(m)_* X \to K(m)_* X$ is nilpotent.

Remark 2. If X is a p-local finite spectrum which admits a v_n -self map f, then X must have type $\ge n$. For if X has type m < n, then X/f has nonvanishing K(m)-homology (since f is not an isomorphism on $K(m)_*X$) but vanishing K(n)-homology.

Example 3. If X is a spectrum of type > n, then $K(n)_*X$ vanishes: it follows that the zero map $0: X \to X$ is a v_n -self map.

The crucial case to consider is where X has type n. In this case, a v_n -self map $f: \Sigma^k X \to X$ will satisfy conditions (1) and (2) above, so that X/f will be a spectrum of type n + 1. Consequently, to verify the existence of spectra of type n for every n, it will suffice to prove the following:

Theorem 4 (Periodicity Theorem). Let X be a finite p-local spectrum of type $\geq n$. Then X admits a v_n -self map.

It will be useful to reformulate the notion of a v_n -self map. If X is a finite p-local spectrum, then $R = X \otimes DX$ has the structure of a ring spectrum. Moreover, giving a self map $\Sigma^k X \to X$ is equivalent to giving an element of $\pi_k R$. The condition of being a v_n -self map translates as follows:

Definition 5. Let R be a p-local ring spectrum. An element $x \in \pi_k R$ is a v_n -element if the image of x in $K(m)_*R$ is nilpotent for $m \neq n$, and invertible for m = n.

This is equivalent to saying that left multiplication by x induces a v_n -self map from R to itself. In particular, it implies that R has type $\geq n > 0$, so that the homotopy groups $\pi_* R$ consist of p-power torsion.

Lemma 6. Let R be a finite p-local ring spectrum and let $x \in \pi_k R$ be a v_n -element. After raising x to a suitable power, we may assume that $x \mapsto v_n^a \in K(n)_*(R)$ and $x \mapsto 0 \in K(m)_*R$ for $m \neq n$.

Proof. Recall that $K(m)_*R \simeq H_*(R; \mathbf{F}_p)[v_m^{\pm 1}]$ for $m \gg 0$. It follows that x is nilpotent in $H_*(R; \mathbf{F}_p)$. Replacing x by a suitable power, we may assume that $x \mapsto 0 \in H_*(R; \mathbf{F}_p)$ and therefore $x \mapsto 0 \in K(m)_*R$ for $m \gg 0$. Consequently, there are only finitely many integers $m \neq n$ for which the image of x does not vanish in $K(m)_*(R)$. Each of these images is nilpotent; raising x to a power, we may assume that $x \mapsto 0 \in K(m)_*R$ for $m \neq n$.

Note that $K(n)_*R$ is a finite module over $\pi_*K(n) \simeq \mathbf{F}_p[v_n^{\pm 1}]$. It follows that $(K(n)_*R)/(v_n-1)$ is finite. The image of $x \in (K(n)_*R)/(v_n-1)$ is a unit, so after raising x to a power we may assume that $x \mapsto 1 \in (K(n)_*R)/(v_n-1) \simeq \bigoplus_{0 \le i \le 2(p^n-1)} K(n)_i R$. It follows that $x \mapsto v_n^a \in K(n)_* R$ for some a. \Box

Lemma 7. Let R be a $\mathbf{Z}_{(p)}$ algebra, and let $x, y \in R$ be commuting elements such that x - y is torsion and nilpotent. Then $x^{p^k} = y^{p^k}$ for $k \gg 0$.

Proof. We have

$$x^{p^{k}} = (y + (x - y))^{p^{k}} = y^{p^{k}} + \sum_{0 \le i \le p^{k}} {\binom{p^{k}}{i}} y^{p^{k} - i} (x - y)^{i}.$$

If $(x - y)^{p^a} = 0$, we can rewrite the right hand side as

$$y^{p^{k}} + \sum_{0 < i < p^{a}} \frac{p^{k}}{i} {p^{k} - 1 \choose i - 1} y^{p^{k} - i} (x - y)^{i}.$$

Each expression $\frac{p^k}{i}$ is divisible by p^{k-a} , and therefore annihilates x - y if $k \gg 0$.

Lemma 8. Let R be a finite p-local ring spectrum and let $x \in \pi_k R$ be a v_n -element. After raising x to a suitable power, we may assume that x is central in $\pi_* R$.

Proof. Without loss of generality we may assume that x satisfies the conclusions of Lemma 6. Let $A = R \otimes DR$, and let $a, b \in \pi_k A$ be given by the self-maps of R given by left and right multiplication by x. Then a and b commute. Since A has type > 0, π_*A is torsion, so $a - b \in \pi_k A$ is torsion. We claim that a - b is nilpotent. To prove this, it suffices to show that the image of a - b vanishes in $K(m)_*A$ for every integer m: in other words, the composite maps

$$\begin{split} R &\to K(m) \otimes R \stackrel{x \times}{\to} K(m) \otimes R \\ R &\to K(m) \otimes R \stackrel{\times x}{\to} K(m) \otimes R \end{split}$$

agree. If $m \neq n$, this is clear (since $x \mapsto 0 \in K(m)_*R$. For m = n, we are reduced to proving that left and right multiplication by v_n^j induce the same self-map of $K(m) \otimes R$. This is clear, since K(n) is a homotopy associative ring spectrum in the category of $MU_{(p)}$ -modules and v_n lies in the image of $\pi_* MU_{(p)} \to \pi_* K(n)$.

Lemma 7 gives $a^{p^j} = b^{p^j}$ for $j \gg 0$. Replacing x by x^{p^j} , we can assume that a = b, so that left and right multiplication by x agree.

Lemma 9. Let R be a finite p-local ring spectrum and $x, y \in \pi_*R$ two v_n -elements. Then $x^a = y^b$ for suitable a, b > 0.

Proof. Raising x and y to suitable powers, we may assume that $x, y \mapsto 0 \in K(m)_*R$ for $m \neq n$ and $x, y \mapsto v_n^j \in K(n)_*R$. Raising to a further power we may assume that x and y commute. Since R is of type $> 0, \pi_*R$ is torsion so that x - y is a torsion element of π_*R . Then $x - y \mapsto 0 \in K(m)_*R$ for all m, so x - y is nilpotent. Using Lemma 7 we conclude that $x^{p^j} = y^{p^j}$ for $j \gg 0$.

Lemma 10. Let X and Y be spectra which admit v_n -self maps $f : \Sigma^a X \to X$ and $g : \Sigma^b Y \to Y$. Let $h : X \to Y$ be any map. Then, replacing f and g by suitable powers, we may assume that a = b and that the diagram

commutes up to homotopy.

Proof. We can view the map h as given by $e: S \to DX \otimes Y$. The commutativity of the diagram then amounts to a homotopy $(Df \otimes id_Y) \circ e \simeq (id_{DX} \otimes g) \circ e$. Since $Df \otimes id_Y$ and $id_{DX} \otimes g$ are two v_n -self maps of $DX \otimes Y$, this identity will hold after replacing f and g by appropriate powers (Lemma 9).

Proposition 11. Let T be the collection of p-local finite spectra which admit a v_n -self map. Then T is thick.

Proof. It is clear that $0 \in \mathcal{T}$ and that \mathcal{T} is closed under suspension and desuspension. We next show that \mathcal{T} is closed under taking cofibers. Let $h: X \to Y$ be a map of *p*-local finite spectra which admit v_n -self maps f and g. By virtue of Lemma 10, we may assume that the diagram

commutes up to homotopy. We may further assume that f and g are zero on K(m)-homology for $m \neq n$.

A choice of homotopy induces a map of cofibers $x : \Sigma^k(Y/X) \to Y/X$. We claim that x is a v_n -self map. Since f and g induce an isomorphism on K(n)-homology, the associated long exact sequence in homology shows that x induces an isomorphism on K(n)-homology. For $m \neq n$, we have a map of exact sequences

$$\begin{split} K(m)_{*-k}Y & \longrightarrow K(m)_{*-k}(Y/X) & \longrightarrow K(m)_{*-k-1}X \\ & \downarrow^0 & \downarrow^x & \downarrow^0 \\ K(m)_*Y & \longrightarrow K(m)_*Y/X & \longrightarrow K(m)_{*-1}X. \end{split}$$

It follows that x carries $K(m)_{*-k}(Y/X)$ into the image of ϕ and that multiplication by x is trivial on the image of ϕ , so that x^2 is trivial on $K(m)_*Y/X$.

It remains to prove that \mathcal{T} is stable under retracts. Let X and Y be p-local spectra and assume that $X \oplus Y$ admits a v_n -self map f. Raising f to a power, we may assume that f vanishes on $K(m)_*(X \oplus Y)$ for $m \neq n$ and is given by multiplication by v_n^j on $K(n)_*(X \oplus Y)$. Then the composite map

$$\Sigma^k X \to \Sigma^k (X \oplus Y) \xrightarrow{f} X \oplus Y \to X$$

has the same properties, and is therefore a v_n self map.

Let \mathcal{T} be the thick subcategory of Proposition 11. The periodicity theorem can be restated as follows: \mathcal{T} contains every spectrum of type $\geq n$. By the thick subcategory theorem, this is equivalent to the following result, which we assert without proof:

Proposition 12. For every integer $n \ge 0$, there exists a finite p-local spectrum X of type n, and a v_n -self map $f: \Sigma^k X \to X$.