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We have seen that the moduli stack MFG of formal groups admits a stratification. The open strata are
locally closed substacks Mn

FG ⊆ Mn
FG classifying formal groups of height exactly n (at some fixed prime

p). These strata are relatively well understood: for 0 < n < ∞, the stratum Mn
FG can be identified with

a quotient Spec Fpp /G, where G is a certain profinite group (the Morava stabilizer group). To understand
the moduli stack MFG itself, we want to know how these strata fit together. In other words, we would like
to understand what MFG looks like in a small neighborhood of some point of Mn

FG. This is the subject of
Lubin-Tate theory.

Let us fix a perfect field k of characteristic p and a formal group law f(x, y) ∈ k[[x, y]] of height n over
k. We would like to understand formal group which are, in some sense, “close” to f .

Definition 1. An infinitesimal thickening of k is a commutative ring A with a surjective map φ : A → k
whose kernel mA = ker(φ) has the following properties:

(1) The ideal ma
A = 0 for a� 0.

(2) Each quotient ma
A/m

a+1
A is a finite-dimensional vector space over k.

In other words, A is a local Artin ring having residue field k.

Definition 2. Let A be an infinitesimal thickening of k. A deformation of f over A is a formal group law
fA over A, whose image under the map FGL(A) → FGL(k) is f . We say that two deformations of f are
isomorphic if they differ by an invertible power series g(t) ∈ A[[t]] such that g(t) ≡ t mod mA. We will
denote the collection of isomorphism classes of deformations of f over A by Def(A).

Remark 3. A priori, we expect that deformations of a formal group law f over A should form a groupoid.
However, this groupoid is actually discrete. In other words, if fA is a deformation of f over A, then any
automorphism of fA which is the identity modulo mA is automatically trivial. To prove this, we can replace
f by the image of fA in FGL(k) and thereby reduce to the case η = id. Let g(x) = b0x + b1x

2 + · · · be
an automorphism of the formal group law fA. We will prove by induction on a that g(x) ≡ x mod ma

A.
When a = 1, this is true by hypothesis; for a sufficiently large, we have ma

A = 0 so that we will have proven
g(x) = x. To complete the proof, we carry out the inductive step. Let A′ be the quotient of A[b±1

0 , b1, . . .]
which classifies automorphisms of fA. The map g is classified by a ring homomorphism ψ : A′ → A, while
the identity automorphism is classified by ψ0 : A′ → A. Assume that the composite maps

ψ,ψ′ : A′ → A→ A/ma
A

agree. Then, modulo ma+1
A , the difference ψ − ψ′ is a map d : A′ → V , where V is the k-vector space

ma
A/m

a+1
A . The map d is an A-linear derivation, and factors as a composition

A′ → A′ ⊗A k
d′

→ V

where d′ is a k-linear derivation. But A′ ⊗A k is the ring classifying automorphisms of the formal group f
of height n, and is therefore etale over k: it follows that d′ = 0 so that ψ ≡ ψ′ mod ma+1

A .
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Remark 4. The set Def(A) can be identified with the set of isomorphism classes of formal groups F over
A lifting the formal group Gf associated to f . To see this, we note that since A is local the formal group
F automatically has the form Ff ′ for some f ′ ∈ FGL(A). By assumption, the image f ′k of f ′ in FGL(k) is
isomorphic to f , via some invertible power series g(t) ∈ k[[t]]. Lifting the coefficients of g arbitrarily, we can
assume that g is the image of a power series g(t) ∈ A[[t]] (automatically invertible). Conjugating f ′ by g,
we obtain the desired deformation of f .

We would like to understand the deformation functor A 7→ Def(A). We begin by writing down a specific
deformation of f . Let W (k) denote the ring of Witt vectors of k, and let R = W (k)[[v1, . . . , vn−1]]. There
is a canonical map R → k, whose kernel is the maximal ideal mR = (p, v1, . . . , vn−1). The formal group f
over k is classified by a map φ0 : L(p) → k, where L(p) ' Z(p)[t1, t2, . . .]. We may assume without loss of
generality that tpi−1 = vi for 1 ≤ i ≤ n − 1. Since f has height n, we conclude that tpi−1 7→ 0 ∈ k for
1 ≤ i ≤ n− 1. Let φ : L(p) → R be any homomorphism which lifts φ0, and carries tpi−1 to vi for 0 < i < m.
This homomorphism determines a formal group law f ∈ FGL(R) whose image in FGL(k) is f .

Theorem 5 (Lubin-Tate). The formal group law f over R = W (k)[[v1, . . . , vn−1]] is a universal deformation
of f in the following sense: for every infinitesimal thickening A of k, f gives a bijection

Hom/k(R,A)→ Def(A).

The proof rests on the following pair of observations:

(1) The functor A 7→ Def(A) is formally smooth: that is, if A→ A′ is a surjective map between infinitesimal
thickenings of k, then the induced map Def(A) → Def(A′) is surjective (this is because any formal
group law over A′ extends to a formal group law over A, since the Lazard ring L is polynomial).

(2) Given a pair of surjective maps A→ B ← C between infinitesimal thickenings of k, the canonical map
Def(A×B C)→ Def(A)×Def(B) Def(C) is a bijection. To see this, it is best to think in terms of formal
groups (Remark 4): Spec(A×B C) is obtained by gluing SpecA and SpecC along the common closed
subscheme SpecB, so giving a formal group over Spec(A×B C) is equivalent to giving a formal groups
over SpecA and SpecC, together with an isomorphism between their restrictions to SpecB.

To prove Theorem 5 we work by induction on the length of the Artinian ring A. If A has length 1, then
A ' k and both Hom/k(R,A) and Def(A) consist of a single element. If A has length > 1, then we can
choose an element x ∈ A which is annihilated by mA. Let us study the relationship between Def(A) and
Def(A/x). Using (2), we have a pullback diagram

Def(A×A/x A) //

��

Def(A)

p

��
Def(A) // Def(A/x).

Note that A×A/x A ' k[x]/(x2)×k A. There is an addition map

k[x]/(x2)×k k[x]/(x2)→ k[x]/(x2)

which, by (2), determines a group structure on Def(k[x]/(x2)). The multiplication

k[x]/(x2)×k A→ A

determines an action of Def(k[x]/(x2)) on Def(A), and the pullback square above shows that p determines
an embedding Def(A)/Def(k[x]/(x2)) ↪→ Def(A/x). It follows from (1) that this map is surjective: that is,
Def(A) is a principal homogeneous space for Def(k[x]/(x2)) over Def(A/x). The same reasoning shows that
Hom/k(R,A) is a torsor for Hom/k(R, k[x]/(x2)) over Hom/k(R,A/x). Since Hom/k(R,A/x) ' Def(A/x)
by the inductive hypothesis, we are reduced to proving the following special case of Theorem 5:
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Lemma 6. The canonical map θ : Hom/k(R, k[x]/(x2))→ Def(k[x]/(x2)) is bijective.

To prove this, we construct a map θ′ : Def(k[x]/(x2)) → kn−1 as follows. Every deformation f ′ is
classified by a map φ from the Lazard ring L into k[x]/(x2) and we have φ(vi) = cix for 0 < i < n. Set
θ′(φ) = (c1, c2, . . . , cn−1).

Claim 7. The sequence (c1, c2, . . . , cn−1) depends only on the isomorphism class of the deformation φ.

To see this, let us suppose that f ′ and f ′′ are deformations of the formal group law f over k[x]/(x2)
which differ by an autommorphism g(t) = (1 + b0x)t + b1xt

2 + b2xt
3 + · · · . These formal group laws have

p-series which we will denote by [p]′(t) and [p]′′(t), which are related by the formula

g([p]′(g−1(t))) = [p]′′(t).

Since f has height ≥ n, the power series [p]′(t) and [p]′′(t) are divisible by x modulo tp
n

. Since x2 = 0 and
g(t) ≡ t mod (x), we deduce that [p]′(t) ≡ [p]′′(t) mod (tp

n

), thereby proving the claim.
It is not hard to see that θ′ is a group homomorphism. Moreover, the composition

Hom/k(R, k[x]/(x2)) θ→ Def(k[x]/(x2)) θ′→ kn−1

is an isomorphism by construction. This proves that θ is injective. To prove that θ is surjective, it will suffice
to show that θ′ is injective. A deformation f ′ of f belongs to the kernel of θ′ if and only if θ′ has height
exactly n. Let f ′′ be the trivial deformation of f ; we wish to show that there is an isomorphism of f ′ with
f ′′ which reduces to the identity modulo x.

Since f ′ and f ′′ are formal groups of height exactly n over k[x]/(x2), the collection of isomorphisms of f ′

and f ′′ is classified by a k[x]/(x2)-algebra R which is an inductive limit of finite etale extensions of k[x]/(x2).
It follows that k[x]/(x2)-algebra homomorphism R→ k lifts uniquely to a k[x]/(x2)-algebra homomorphism
R → k[x]/(x2): in particular, the identity automorphism f extends uniquely to an isomorphism of f with
f ′. This completes the proof of Theorem 5.

Remark 8. Let A be a complete Noetherian local ring with residue field k and maximal ideal mA. Then
each A/ma

A is an infinitesimal thickening of k, and A ' lim←−A/m
a
A. It follows that Theorem 5 is also true

for A: giving a deformation of the formal group f over A is equivalent to giving a ring homomorphism
W (k)[[v1, . . . , vn−1]]→ A which is the identity on the common residue field k.

In particular, we see that W (k)[[v1, . . . , vn−1]] is characterized uniquely by Theorem 5. As such, it
depends functorially on the residue field k together with the choice of formal group of height n over k.

In particular, if we take k = Fp, then the Morava stabilizer group G acts on W (Fp)[[v1, . . . , vn−1]].

Remark 9. Let k and R = W (k)[[v1, . . . , vn−1]] be as above. Then the formal group law over R is Landwe-
ber exact: the sequence v0 = p, v1, . . . , vn−1 is regular by construction, and vn has invertible image in
R/(v0, v1, . . . , vn−1) ' k by virtue of our assumption that the original formal group law f has height n.

Using results of previous lectures, we can construct an even periodic spectrum E(n) with π∗E(n) '
W (k)[[v1, . . . , vn−1]][β±1], where β has degree 2. The cohomology theory E(n) (which really depends not
only on n, but on a choice of field k and a formal group of height n over k) is called Morava E-theory. It is
also sometimes called Lubin-Tate theory or completed Johnson-Wilson theory.
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