
Classification of Formal Groups (Lecture 14)

April 27, 2010

Our goal in this lecture is to prove Lazard’s theorem, which asserts that a formal group law over an
algebraically closed field is determined up to isomorphism by its height. We will prove this result in the
following more precise form:

Theorem 1. Let f(x, y), f ′(x, y) ∈ R[[x, y]] be formal group laws of height exactly n > 0 and let R′ be the
ring which classifies isomorphisms between f and f ′: that is, R′ = R[b±1

0 , b1, b2, . . .]/I, where I is the ideal
generated by all coefficients in the power series f(g(x), g(y)) − g(f ′(x, y)), where g(t) = b0t + b1t

2 + · · · .
Then R′ is isomorphic to the direct limit of a system of (injective) finite etale maps

R = R(1) ↪→ R(2) ↪→ · · ·

We will regard f and f ′ as fixed for the duration of the proof. Since f ′(x, y) has height exactly n, we
may assume without loss of generality that

f ′(x, y) ≡ x+ y +
∑

0<i<pn

λ

(
pn

i

)
p
xiyp

n−i mod (x, y)p
n+1,

where λ is invertible in R.
Our first step is to choose a more convenient set of polynomial generators for the ring R[b∓1

0 , b1, b2, . . .].

Construction 2. Let A be a commutative R-algebra and suppose we are given a sequence of elements
c0, c1, . . . ∈ A with c0 invertible. We define a sequence of formal group laws fm(x, y) by induction as follows:

(1) Set f1(x, y) = f(x, y).

(2) If m is not a power of p, we let fm(x, y) = g−1
m fm−1(gm(x), gm(y)), where gm(x) = x+ cm−1x

m.

(3) If m = pn
′

for n′ < n, we let fm = fm−1 = g−1
m fm−1(gm(x), gm(y)) where gm(t) = t.

(4) If m = pn, we let fm = g−1
m fm−1(gm(x), gm(y)) where gm(t) = c0t.

(5) If m = pn+n′ for n′ > 0, we let fm = g−1
m fm−1(gm(x), gm(y)) where gm(t) = fm−1(t, cpn′−1t

pn′

).

We note that fm(x, y) tends to a limit f∞(x, y) = g−1f(g(x), g(y)) where g(t) denotes the infinite (conver-
gent) infinite composition g2◦g3◦g4◦· · · . Note that g(t) = b0t+b1t2+b2t3+· · · where bi = ci+decomposables.
This gives an identification of polynomial rings

R[b±1
0 , b1, b2, . . .] ' R[c±1

0 , c1, . . .].

We can therefore identify the ring R′ of Theorem 1w ith R[c±1
0 , c1, . . .]/I, where I is the ideal generated by

all coefficients in the power series f∞(x, y)− f ′(x, y).

Lemma 3. Let c0, c1, . . . ∈ A be as above. Assume that fm−1(x, y) is congruent to f ′(x, y) modulo (x, y)m.
Then fm(x, y) is congruent to f ′(x, y) modulo (x, y)m.
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Proof. In cases (1) through (3), we have gm(t) ≡ t mod tm so it is clear that

fm(x, y) ≡ fm−1(x, y) ≡ f ′(x, y) mod (x, y)m.

In case (4), we have fm−1(x, y) ≡ x+ y mod (x, y)m so that

fm(x, y) = c−1
0 fm−1(c0x, c0y) ≡ x+ y mod (x, y)m

The tricky part is case (5).
The tricky part is case (5). Let m = pn+n′ for n′ > 0, and let c = cpn′−1, so that gm(t) = fm−1(t, ctp

n′

).
For any sequence of variables x1, x2, . . . , xa, we let fm−1(x1, x2, . . . , xa) = fm−1(x1, fm−1(x2, . . . fm−1(xa−1, xa)) . . .)
(this is unambiguous since fm−1 is a formal group law).

We have
gmfm(x, y) = fm−1(gm(x), gm(y)) = fm−1(x, y, cxp

n′

, cyp
n′

.

Let z = z(x, y) be such that cfm(x, y)p
n′

= fm−1(z, cxp
n′

, cyp
n′

), so that fm−1(fm(x, y), z) = fm−1(x, y).
We prove the following by simultaneous induction on m′ ≤ m:

(a) We have z ≡ 0 mod ((x, y)m
′
).

(b) We have fm(x, y) ≡ fm−1(x, y) ≡ f ′(x, y) mod ((x, y)m
′
).

These claims are obvious when m′ = 1, and the implication (a) ⇒ (b) is clear. Assume that (a) and (b)
hold for some integer m′ < m. The inductive hypothesis gives fm−1(z, cxp

n′

, cyp
n′

) ≡ z+ fm−1(cxp
n′

, cyp
n′

)
mod (x, y)m

′+1. Thus z ≡ cfm(x, y)p
n′ −fm−1(cxp

n′

, cyp
n′

) mod (x, y)m
′+1. The inductive hypothesis gives

fm(x, y)p
n′ ≡ fm−1(x, y)p

n′

mod (x, y)p
n′m′ , so we get

z ≡ cfm−1(x, y)p
n′

− fm−1(cxp
n′

, cyp
n′

) mod (x, y)m
′+1

By assumption, we have fm−1(x, y) ≡ f ′(x, y) ≡ x+ y mod (x, y)p
n

. It follows that

cfm−1(x, y)p
n′

− fm−1(cxp
n′

, cyp
n′

) ≡ c(x+ y)p
n′

− cxp
n′

− cyp
n′

≡ 0 mod (x, y)p
n+n′

.

Since m′ + 1 ≤ m = pn+n′ , we conclude that z ≡ 0 mod (x, y)m
′+1 as desired.

We now return to the proof of Theorem 1. By Lemma 3, we have f∞(x, y) = f ′(x, y) if and only if
fm(x, y) ≡ f ′(x, y) mod (x, y)m+1 for all m. Note that fm(x, y) depends only on the parameters ci where
i belongs to the set Sm = {i < m : i 6= pk − 1} ∪ {pk − 1 : pn+k ≤ m}. R(m) denote the quotient ring
R[ci]i∈Sm

/I(m) for m < pn, and the quotient ring R[ci, c−1
0 ]iıSm

/I(m) for m ≥ pn, where I(m) is the ideal
generated by the coefficients of xiyj in fm(x, y) − f ′(x, y) where i + j ≤ m. Then R′ is the colimit of the
sequence

R = R(1)→ R(2)→ R(3)→ · · ·
To prove Theorem 1, it will suffice to show that each of the inclusions R(m − 1) → R(m) is a finite etale
extension (which is injective). There are several cases to consider:

(a) Suppose that m is not a power of p. Then R(m) = R(m− 1)[cm−1]/J , where J is the ideal generated
by coefficients of total degree m in the expression fm(x, y)− f ′(x, y). Note that fm−1(x, y) ≡ f ′(x, y)
mod (x, y)m, so (by the lemma of the previous lecture) we can write

f ′(x, y) ≡ fm−1(x, y) + µ
∑

0<i<m

(
m
i

)
d
xiym−i mod (x, y)m+1

where d is the greatest common divisor of the binomial coefficients
(
m
i

)
. Since m is not a power of p, the

integer d is invertible in R. A simple calculation gives fm(x, y) ≡ fm−1(x, y)+ cm(xm+ym− (x+y)m)
mod (x, y)m+1. Thus fm(x, y) ≡ f ′(x, y) if and only if cm = −µd . It follows that R(m) ' R(m −
1) (that is, the coefficient cm is uniquely determined by the requirement that f ′(x, y) ≡ fm(x, y)
mod (x, y)m+1.
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(b) Suppose that m = pn
′
, n′ < n. Then R(m) = R(m − 1)/J , where J is the ideal generated by

coefficients of degree m in the difference fm(x, y) − f ′(x, y). We have fm(x, y) = fm−1(x, y) ≡
f ′(x, y) ≡ x + y mod (x, y)p

m

. It follows from the lemma of the last lecture that fm(x, y) =

x+y+µ
∑

0<i<m
(pn′

i )
p xiym−i for some uniquely determined constant µ. Since fm is isomorphic to f , it

has height exactly n, and therefore µ = 0. It follows that fm(x, y) ≡ x+ y ≡ f ′(x, y) mod (x, y)p
m+1,

so that again R(m) ' R(m− 1).

(c) Suppose that m = pn. Then R(m) = R(m − 1)[c±1
0 ]/J where J is the ideal generated by coefficients

of degree m in fm(x, y)− f ′(x, y). We have fm−1(x, y) ≡ f ′(x, y) ≡ x+ y mod (x, y)p
m

so that

fm−1(x, y) ≡ x+ y + λ′
∑

0<i<m

(
m
i

)
p
xiym−j mod (x, y)m+1

for some constant λ′. It follows that

fm(x, y) ≡ x+ y + cp
n−1

0 λ′
∑

0<i<m

(
m
i

)
p
xiym−j mod (x, y)m+1.

Consequently, fm(x, y) ≡ f ′(x, y) mod (x, y)m+1 if and only if cp
n−1

0 λ′ = λ. Since f and f ′ have
height exactly n, the constants λ and λ′ are invertible; thus R(m) ' R(m− 1)[c0]/(cpn−1

0 − λ
λ′ ).

(d) Suppose that m = pn+n′ for n′ > 0. Let c = cpn′−1, so that R(m) ' R(m − 1)[c]/J , where J is the
ideal generated by coefficients on monomials of degree m in fm(x, y)− f ′(x, y). This is the tricky part.

Since fm−1(x, y) ≡ f ′(x, y) mod (x, y)m, we can write

fm−1(x, y) ≡ f ′(x, y) + µ
∑

0<i<m

(
m
i

)
p
xiym−i

for some constant µ. Let z = z(x, y) be as in the proof of Lemma 3, so that z(x, y) ∈ (x, y)m. We have

fm−1(x, y) = fm−1(fm(x, y), z) ≡ fm(x, y) + z mod (x, y)m+1.

Consequently, we have fm(x, y) ≡ f ′(x, y) mod (x, y)m+1 if and only if z ≡ µ
∑

0<i<m
(m

i )
p xiym−i

mod (x, y)m+1.

The proof of Lemma 3 gives

z ≡ cfm−1(x, y)p
n′

− fm−1(cxp
n′

, cyp
n′

) mod (x, y)m+1.

We have

fm−1(x, y) ≡ f ′(x, y) ≡ x+ y + λ
∑

0<j<pn

(
pn

j

)
p
xjyp

n−j mod (x, y)p
n+1.

It follows that

z ≡ (cλp
n′

− λcp
n

)
∑

0<j<pn

(
pn

j

)
p
xp

n′ jym−p
n′ j mod (x, y)m+1.

Thus fm(x, y) ≡ f ′(x, y) mod (x, y)m+1 if and only if the following conditions are satisfied:

(i) The coefficients µ (pn+n′

i )
p vanishes when i is not divisible by pn.
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(ii) For 0 < j < pn
′
, we have

µ

(
pn+n′

pnj

)
p

= (λp
n′

c− λcp
n

)

(
pn′

j

)
p

We claim that these conditions are satisfied if and only if cp
n − λp

n′−1c + µ
λ = 0. It follows that

R(m) = R(m− 1)[c]/(cp
n −λpn′−1c+ µ

λ ) is a finite étale extension of R(m− 1). To complete the proof,
we verify the following combinatorial identity:

Lemma 4. Let n be an integer. Then(
pn

i

)
≡

{(
p
j

)
if i = pn−1j

0 otherwise
mod p2.

Proof. Let G = Z/pnZ be a cyclic group. Then G acts by translation on the set S of all i-element
subsets of G. Let G′ be the subgroup pZ/pnZ. Any point of S is either fixed by G′, or is fixed by a
smaller subgroup and therefore has size divisible by p2. It follows that the cardinality |S| is congruent
modulo p2 to the cardinality of the fixed point set |SG′ |, which is the number of ways to choose a
subset of the quotient G/G′ having cardinality j = i

pn−1 .
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