Classification of Formal Groups (Lecture 14)

April 27, 2010

Our goal in this lecture is to prove Lazard’s theorem, which asserts that a formal group law over an
algebraically closed field is determined up to isomorphism by its height. We will prove this result in the
following more precise form:

Theorem 1. Let f(x,y), f'(z,y) € R|[[z,y]] be formal group laws of height exactly n > 0 and let R be the
ring which classifies isomorphisms between f and f': that is, R = R[b(jfl, b1,ba,...)/I, where I is the ideal
generated by all coefficients in the power series f(g(x),g(y)) — g(f'(x,y)), where g(t) = bot + byt? + ---.
Then R’ is isomorphic to the direct limit of a system of (injective) finite etale maps

R=R(1)— R(2) = -

We will regard f and [’ as fixed for the duration of the proof. Since f’(x,y) has height exactly n, we
may assume without loss of generality that

-
flay=z+y+ > A@xzy”n_z mod (z,y)"" *',
0<i<pn

where A is invertible in R.
Our first step is to choose a more convenient set of polynomial generators for the ring R[b] L by, by, .. J.

Construction 2. Let A be a commutative R-algebra and suppose we are given a Sequence of elements
o, C1, - .. € A with ¢y invertible. We define a sequence of formal group laws f,(x,y) by induction as follows:

(1) Set fi(z,y) = f(z,y).

(2) If m is not a power of p, we let frn(x,y) = g fr—1(gm(2), gm (y)), where gm(x) = = + cp12™.
(3) Ifm = pn' fOT n' < n, we let fm = fm—l = 9&1fm_1(9m($)a9m(y)) where gm(t) =t.
(4)

4) If m = p", we let fr = g frn—1(9m(2), g (y)) where gn,(t) = cot.

/

(5) If m = p™™ forn/ >0, we let fu, = g7} frn1(gm(2), gm (y)) where g (t) = fm,l(t,cpn/_ltpn ).

We note that f,(z,y) tends to a limit foo (z,y) = g~ f(g(x), g(y)) where g(t) denotes the infinite (conver-
gent) infinite composition googzogso- - - . Note that g(t) = bot+bit2+bat3+- - where b; = c;+ decomposables.
This gives an identification of polynomial rings

R[bE by, bo, .. ] = R[cE! eq,. . .

We can therefore identify the ring R’ of Theorem 1w ith R[cE', c1,...]/I, where I is the ideal generated by
all coefficients in the power series foo(x,y) — f'(z,y).

Lemma 3. Let cg,c1,... € A be as above. Assume that fm,—1(x,y) is congruent to f'(x,y) modulo (z,y)™.
Then fm(x,y) is congruent to f'(x,y) modulo (x,y)™.



Proof. In cases (1) through (3), we have g,,(t) =¢ mod t™ so it is clear that
fn(@,y) = fr1(2,y) = f'(2,y)  mod (z,y)™
In case (4), we have f,,—1(z,y) =z +y mod (z,y)™ so that
fnlz,y) = gt fnea(coz, coy) =z +y mod (z,y)™

The tricky part is case (5).
The tricky part is case (5). Let m = p"*™ for n’ > 0, and let ¢ = Cpn' 1, 80 that gm(t) = frm—1(t,ct?" ).

For any sequence of variables x1, xa, . . ., x4, welet fr,_1(21,29,...,24) = frn—1(@1, frn—1(22, . .« frn—1(Ta—1,%a))--")
(this is unambiguous since f,,—1 is a formal group law).
We have

I [ (2, Y) = frn—1(gm (), gm (y)) = fn—1(2, 9, ca?” 7Cypn
Let z = z(x,y) be such that cfm(m,y)p"/ = fm_l(z,c:r:p"/,cyp"/), so that fo—1(fm(2,9),2) = fm-1(z,v).
We prove the following by simultaneous induction on m’ < m:

(a) We have z =0 mod ((x,y)™).
(b) We have f(2,y) = fm—1(2,y) = f'(2,y) mod ((z,y)™).

These claims are obvious when m’ = 1, and the implication (a) = (b) is clear. Assume that (a) and (b)
hold for some integer m’ < m. The inductive hypothesis gives f,—1(z, ca?” , cypn/) =z+ fm_l(cacpn/ , cy”n/)
mod (z,y)™ 1. Thus z = ¢fm(z, y)p”, —fm_l(cxpn/ , cypn/) mod (x,y)™ *1. The inductive hypothesis gives
fm(x,y)pn/ = fm_l(x,y)p”, mod (x,y)pn/m/, so we get

2= cfmo1(z,y)"" — fmoi(ca? ey’ ) mod (z,y)™

By assumption, we have f,,_1(z,y) = f'(z,y) =z +y mod (z,5)P". It follows that

/

cfm_l(x,y)pn - fm_l(c:vpn ,cypn ) =c(z + y)pn —ecx?" — cy’ =0 mod (z,y)?

’ .
m+1 a9 desired. O

n n+n/

Since m’ +1 < m = p"*", we conclude that z =0 mod (z,y)

We now return to the proof of Theorem 1. By Lemma 3, we have foo(z,y) = f'(z,y) if and only if
f(z,y) = f'(x,y) mod (x,y)™*! for all m. Note that f,,(z,y) depends only on the parameters c; where
i belongs to the set S, = {i < m i # p* —1} U {p* — 1 : p"™* < m}. R(m) denote the quotient ring
Rlcilies,, /I(m) for m < p", and the quotient ring R[c;, cg ‘]us,, /I(m) for m > p", where I(m) is the ideal
generated by the coefficients of 2%y in f,,(x,y) — f'(x,y) where i + j < m. Then R’ is the colimit of the
sequence

R=R(1)— R(2) — R(3) — ---
To prove Theorem 1, it will suffice to show that each of the inclusions R(m — 1) — R(m) is a finite etale
extension (which is injective). There are several cases to consider:

(a) Suppose that m is not a power of p. Then R(m) = R(m — 1)[¢m—1]/J, where J is the ideal generated
by coefficients of total degree m in the expression f,,(z,y) — f'(x,y). Note that fn,—1(z,y) = f'(z,y)
mod (z,y)™, so (by the lemma of the previous lecture) we can write

Czl) wiym—i mod (x’y)m-i-l

fl@,y) = fmoa(zy) +0 Y

0<i<m

where d is the greatest common divisor of the binomial coefficients (T) Since m is not a power of p, the
integer d is invertible in R. A simple calculation gives fy,(x,y) = fr—1(z,y) +cm(z™ +y™ — (z+y)™)

mod (z,y)™*'. Thus fu(z,y) = f'(z,y) if and only if ¢,, = —4. Tt follows that R(m) ~ R(m —
1) (that is, the coefficient ¢, is uniquely determined by the requirement that f'(z,y) = fin(z,9)
mod (z,y)"t!.



(b)

Suppose that m = p", n' < n. Then R(m) = R(m — 1)/J, where J is the ideal generated by
coefficients of degree m in the difference f,,(z,y) — f'(z,y). We have f,.(z,y) = fm-1(z,y)
f'(xz,y) = = +y mod (z,y)?". Tt follows from the lemma of the last lecture that f,,(z,%)

N ‘
THYFIY ocicm ( p ):L”ym_z for some uniquely determined constant . Since f,, is isomorphic to f, it

has height exactly n, and therefore p = 0. It follows that f,,(z,y) =z +y = f'(x,y) mod (z,y)?" 1,
so that again R(m) ~ R(m — 1).

Suppose that m = p". Then R(m) = R(m — 1)[cE']/J where J is the ideal generated by coefficients
of degree m in fo,(z,y) — f'(x,y). We have fr,_1(z,y) = f'(z,y) =z +y mod (z,y)?" so that

m
foa(@y) =z +y+ N D Qmiym’j mod (z,y)"*!
0<i<m
for some constant \’. It follows that
m
fm(x,y) = x+y+cgnfl)\/ Z (z)xlyﬂ’L*] mod (x’y)’mr‘rl.
p

0<i<m

Consequently, f..(z,y) = f'(z,y) mod (z,y)™*! if and only if Cg”_l/\/ = \. Since f and f’ have
height exactly n, the constants A and A’ are invertible; thus R(m) ~ R(m — 1)[co] /(B — %)

Suppose that m = p"*" for n’ > 0. Let ¢ = cn 1, 50 that R(m) ~ R(m — 1)[c]/J, where .J is the
ideal generated by coefficients on monomials of degree m in f,,(x,y) — f'(z,y). This is the tricky part.
Since fr—1(z,y) = f'(z,y) mod (z,y)™, we can write

(%)

mzymfz

foa(@,y) = f@y) +n Y

0<i<m

for some constant p. Let z = z(x, y) be as in the proof of Lemma 3, so that z(z,y) € (z,y)™. We have
fmfl(xv y) = fmfl(fm($7 y)7 Z) = fm(x7 y) +2z mod ({)37 y)m-i-l.

(%) i, m—i

m—+1 'ty

Consequently, we have f,(z,y) = f'(z,y) mod (z,y)
m—+1

if and only if 2 = ) 5 i,
mod (z,y)

The proof of Lemma 3 gives

’ /

= Cfmfl(‘x?y)pn - fmfl(cxpn ’cyp" ) mod (LL', y)m+1’

We have N
P
fralmy) =@y =z+y+X > ijy”n’j mod (z,y)"" *1.
0<j<pn
It follows that .
’ p. n! . n'! .
2= (A" —AP") Z sz Jym=P" I mod (x,y)™"!.

o<jepn P

Thus fo(2,y) = f(z,y) mod (x,y)™*! if and only if the following conditions are satisfied:

")

(i) The coefficients p~—-—— vanishes when i is not divisible by p™.
P



(i7) For 0 < j < p", we have
pn+n' , pT'L
NM:(AP"C_)\CPH)( )
p p

We claim that these conditions are satisfied if and only if ¢®” — AP" ¢ + & = 0. It follows that

R(m) = R(m—1)[c]/(c*" — et &) is a finite étale extension of R(m —1). To complete the proof,
we verify the following combinatorial identity:

Lemma 4. Let n be an integer. Then

n p s n—1
(p‘ ) = (J) zfzfp‘ 7 mod 2.
() 0 otherwise

Proof. Let G = Z/p"Z be a cyclic group. Then G acts by translation on the set S of all i-element
subsets of G. Let G’ be the subgroup pZ/p"Z. Any point of S is either fixed by G’, or is fixed by a
smaller subgroup and therefore has size divisible by p?. It follows that the cardinality |S| is congruent
modulo p? to the cardinality of the fixed point set \SG/|7 which is the number of ways to choose a
subset of the quotient G/G’ having cardinality j = pn%l O



