Classification of Formal Groups (Lecture 14)

April 27, 2010

Our goal in this lecture is to prove Lazard's theorem, which asserts that a formal group law over an algebraically closed field is determined up to isomorphism by its height. We will prove this result in the following more precise form:

Theorem 1. Let $f(x, y), f^{\prime}(x, y) \in R[[x, y]]$ be formal group laws of height exactly $n>0$ and let R^{\prime} be the ring which classifies isomorphisms between f and f^{\prime} : that is, $R^{\prime}=R\left[b_{0}^{ \pm 1}, b_{1}, b_{2}, \ldots\right] / I$, where I is the ideal generated by all coefficients in the power series $f(g(x), g(y))-g\left(f^{\prime}(x, y)\right)$, where $g(t)=b_{0} t+b_{1} t^{2}+\cdots$. Then R^{\prime} is isomorphic to the direct limit of a system of (injective) finite etale maps

$$
R=R(1) \hookrightarrow R(2) \hookrightarrow \cdots
$$

We will regard f and f^{\prime} as fixed for the duration of the proof. Since $f^{\prime}(x, y)$ has height exactly n, we may assume without loss of generality that

$$
f^{\prime}(x, y) \equiv x+y+\sum_{0<i<p^{n}} \lambda \frac{\binom{p^{n}}{i}}{p} x^{i} y^{p^{n}-i} \bmod (x, y)^{p^{n}+1}
$$

where λ is invertible in R.
Our first step is to choose a more convenient set of polynomial generators for the ring $R\left[b_{0}^{\mp 1}, b_{1}, b_{2}, \ldots\right]$.
Construction 2. Let A be a commutative R-algebra and suppose we are given a sequence of elements $c_{0}, c_{1}, \ldots \in A$ with c_{0} invertible. We define a sequence of formal group laws $f_{m}(x, y)$ by induction as follows:
(1) Set $f_{1}(x, y)=f(x, y)$.
(2) If m is not a power of p, we let $f_{m}(x, y)=g_{m}^{-1} f_{m-1}\left(g_{m}(x), g_{m}(y)\right)$, where $g_{m}(x)=x+c_{m-1} x^{m}$.
(3) If $m=p^{n^{\prime}}$ for $n^{\prime}<n$, we let $f_{m}=f_{m-1}=g_{m}^{-1} f_{m-1}\left(g_{m}(x), g_{m}(y)\right)$ where $g_{m}(t)=t$.
(4) If $m=p^{n}$, we let $f_{m}=g_{m}^{-1} f_{m-1}\left(g_{m}(x), g_{m}(y)\right)$ where $g_{m}(t)=c_{0} t$.
(5) If $m=p^{n+n^{\prime}}$ for $n^{\prime}>0$, we let $f_{m}=g_{m}^{-1} f_{m-1}\left(g_{m}(x), g_{m}(y)\right)$ where $g_{m}(t)=f_{m-1}\left(t, c_{p^{n^{\prime}-1}} t^{p^{n^{\prime}}}\right)$.

We note that $f_{m}(x, y)$ tends to a limit $f_{\infty}(x, y)=g^{-1} f(g(x), g(y))$ where $g(t)$ denotes the infinite (convergent) infinite composition $g_{2} \circ g_{3} \circ g_{4} \circ \cdots$. Note that $g(t)=b_{0} t+b_{1} t^{2}+b_{2} t^{3}+\cdots$ where $b_{i}=c_{i}+$ decomposables. This gives an identification of polynomial rings

$$
R\left[b_{0}^{ \pm 1}, b_{1}, b_{2}, \ldots\right] \simeq R\left[c_{0}^{ \pm 1}, c_{1}, \ldots\right]
$$

We can therefore identify the ring R^{\prime} of Theorem $1 w$ ith $R\left[c_{0}^{ \pm 1}, c_{1}, \ldots\right] / I$, where I is the ideal generated by all coefficients in the power series $f_{\infty}(x, y)-f^{\prime}(x, y)$.

Lemma 3. Let $c_{0}, c_{1}, \ldots \in A$ be as above. Assume that $f_{m-1}(x, y)$ is congruent to $f^{\prime}(x, y)$ modulo $(x, y)^{m}$. Then $f_{m}(x, y)$ is congruent to $f^{\prime}(x, y)$ modulo $(x, y)^{m}$.

Proof. In cases (1) through (3), we have $g_{m}(t) \equiv t \bmod t^{m}$ so it is clear that

$$
f_{m}(x, y) \equiv f_{m-1}(x, y) \equiv f^{\prime}(x, y) \quad \bmod (x, y)^{m}
$$

In case (4), we have $f_{m-1}(x, y) \equiv x+y \bmod (x, y)^{m}$ so that

$$
f_{m}(x, y)=c_{0}^{-1} f_{m-1}\left(c_{0} x, c_{0} y\right) \equiv x+y \quad \bmod (x, y)^{m}
$$

The tricky part is case (5).
The tricky part is case (5). Let $m=p^{n+n^{\prime}}$ for $n^{\prime}>0$, and let $c=c_{p^{n^{\prime}-1}}$, so that $g_{m}(t)=f_{m-1}\left(t, c t^{p^{n^{\prime}}}\right)$. For any sequence of variables $x_{1}, x_{2}, \ldots, x_{a}$, we let $f_{m-1}\left(x_{1}, x_{2}, \ldots, x_{a}\right) \stackrel{p^{p}}{=} f_{m-1}\left(x_{1}, f_{m-1}\left(x_{2}, \ldots f_{m-1}\left(x_{a-1}, x_{a}\right)\right) \ldots\right)$ (this is unambiguous since f_{m-1} is a formal group law).

We have

$$
g_{m} f_{m}(x, y)=f_{m-1}\left(g_{m}(x), g_{m}(y)\right)=f_{m-1}\left(x, y, c x^{p^{n^{\prime}}}, c y^{p^{n^{\prime}}}\right.
$$

Let $z=z(x, y)$ be such that $c f_{m}(x, y)^{p^{n^{\prime}}}=f_{m-1}\left(z, c x^{p^{n^{\prime}}}, c y^{p^{n^{\prime}}}\right)$, so that $f_{m-1}\left(f_{m}(x, y), z\right)=f_{m-1}(x, y)$. We prove the following by simultaneous induction on $m^{\prime} \leq m$:
(a) We have $z \equiv 0 \bmod \left((x, y)^{m^{\prime}}\right)$.
(b) We have $f_{m}(x, y) \equiv f_{m-1}(x, y) \equiv f^{\prime}(x, y) \bmod \left((x, y)^{m^{\prime}}\right)$.

These claims are obvious when $m^{\prime}=1$, and the implication $(a) \Rightarrow(b)$ is clear. Assume that (a) and (b) hold for some integer $m^{\prime}<m$. The inductive hypothesis gives $f_{m-1}\left(z, c x^{p^{n^{\prime}}}, c y^{p^{p^{\prime}}}\right) \equiv z+f_{m-1}\left(c x^{p^{n^{\prime}}}, c y^{p^{n^{\prime}}}\right)$ $\bmod (x, y)^{m^{\prime}+1}$. Thus $z \equiv c f_{m}(x, y)^{p^{n^{\prime}}}-f_{m-1}\left(c x^{p^{n^{\prime}}}, c y^{p^{n^{\prime}}}\right) \bmod (x, y)^{m^{\prime}+1}$. The inductive hypothesis gives $f_{m}(x, y)^{p^{n^{\prime}}} \equiv f_{m-1}(x, y)^{p^{n^{\prime}}} \bmod (x, y)^{p^{n^{\prime}}} m^{\prime}$, so we get

$$
z \equiv c f_{m-1}(x, y)^{p^{n^{\prime}}}-f_{m-1}\left(c x^{p^{n^{\prime}}}, c y^{p^{n^{\prime}}}\right) \quad \bmod (x, y)^{m^{\prime}+1}
$$

By assumption, we have $f_{m-1}(x, y) \equiv f^{\prime}(x, y) \equiv x+y \bmod (x, y)^{p^{n}}$. It follows that

$$
c f_{m-1}(x, y)^{p^{n^{\prime}}}-f_{m-1}\left(c x^{p^{n^{\prime}}}, c y^{p^{n^{\prime}}}\right) \equiv c(x+y)^{p^{n^{\prime}}}-c x^{p^{n^{\prime}}}-c y^{p^{n^{\prime}}} \equiv 0 \quad \bmod (x, y)^{p^{n+n^{\prime}}}
$$

Since $m^{\prime}+1 \leq m=p^{n+n^{\prime}}$, we conclude that $z \equiv 0 \bmod (x, y)^{m^{\prime}+1}$ as desired.
We now return to the proof of Theorem 1. By Lemma 3, we have $f_{\infty}(x, y)=f^{\prime}(x, y)$ if and only if $f_{m}(x, y) \equiv f^{\prime}(x, y) \bmod (x, y)^{m+1}$ for all m. Note that $f_{m}(x, y)$ depends only on the parameters c_{i} where i belongs to the set $S_{m}=\left\{i<m: i \neq p^{k}-1\right\} \cup\left\{p^{k}-1: p^{n+k} \leq m\right\} . R(m)$ denote the quotient ring $R\left[c_{i}\right]_{i \in S_{m}} / I(m)$ for $m<p^{n}$, and the quotient ring $R\left[c_{i}, c_{0}^{-1}\right]_{i_{1} S_{m}} / I(m)$ for $m \geq p^{n}$, where $I(m)$ is the ideal generated by the coefficients of $x^{i} y^{j}$ in $f_{m}(x, y)-f^{\prime}(x, y)$ where $i+j \leq m$. Then R^{\prime} is the colimit of the sequence

$$
R=R(1) \rightarrow R(2) \rightarrow R(3) \rightarrow \cdots
$$

To prove Theorem 1, it will suffice to show that each of the inclusions $R(m-1) \rightarrow R(m)$ is a finite etale extension (which is injective). There are several cases to consider:
(a) Suppose that m is not a power of p. Then $R(m)=R(m-1)\left[c_{m-1}\right] / J$, where J is the ideal generated by coefficients of total degree m in the expression $f_{m}(x, y)-f^{\prime}(x, y)$. Note that $f_{m-1}(x, y) \equiv f^{\prime}(x, y)$ $\bmod (x, y)^{m}$, so (by the lemma of the previous lecture) we can write

$$
f^{\prime}(x, y) \equiv f_{m-1}(x, y)+\mu \sum_{0<i<m} \frac{\binom{m}{i}}{d} x^{i} y^{m-i} \quad \bmod (x, y)^{m+1}
$$

where d is the greatest common divisor of the binomial coefficients $\binom{m}{i}$. Since m is not a power of p, the integer d is invertible in R. A simple calculation gives $f_{m}(x, y) \equiv f_{m-1}(x, y)+c_{m}\left(x^{m}+y^{m}-(x+y)^{m}\right)$ $\bmod (x, y)^{m+1}$. Thus $f_{m}(x, y) \equiv f^{\prime}(x, y)$ if and only if $c_{m}=-\frac{\mu}{d}$. It follows that $R(m) \simeq R(m-$ 1) (that is, the coefficient c_{m} is uniquely determined by the requirement that $f^{\prime}(x, y) \equiv f_{m}(x, y)$ $\bmod (x, y)^{m+1}$.
(b) Suppose that $m=p^{n^{\prime}}, n^{\prime}<n$. Then $R(m)=R(m-1) / J$, where J is the ideal generated by coefficients of degree m in the difference $f_{m}(x, y)-f^{\prime}(x, y)$. We have $f_{m}(x, y)=f_{m-1}(x, y) \equiv$ $f^{\prime}(x, y) \equiv x+y \bmod (x, y)^{p^{m}}$. It follows from the lemma of the last lecture that $f_{m}(x, y)=$ $x+y+\mu \sum_{0<i<m} \frac{\binom{p^{n^{\prime}}}{i}}{p} x^{i} y^{m-i}$ for some uniquely determined constant μ. Since f_{m} is isomorphic to f, it has height exactly n, and therefore $\mu=0$. It follows that $f_{m}(x, y) \equiv x+y \equiv f^{\prime}(x, y) \bmod (x, y)^{p^{m}+1}$, so that again $R(m) \simeq R(m-1)$.
(c) Suppose that $m=p^{n}$. Then $R(m)=R(m-1)\left[c_{0}^{ \pm 1}\right] / J$ where J is the ideal generated by coefficients of degree m in $f_{m}(x, y)-f^{\prime}(x, y)$. We have $f_{m-1}(x, y) \equiv f^{\prime}(x, y) \equiv x+y \bmod (x, y)^{p^{m}}$ so that

$$
f_{m-1}(x, y) \equiv x+y+\lambda^{\prime} \sum_{0<i<m} \frac{\binom{m}{i}}{p} x^{i} y^{m-j} \bmod (x, y)^{m+1}
$$

for some constant λ^{\prime}. It follows that

$$
f_{m}(x, y) \equiv x+y+c_{0}^{p^{n}-1} \lambda^{\prime} \sum_{0<i<m} \frac{\binom{m}{i}}{p} x^{i} y^{m-j} \bmod (x, y)^{m+1}
$$

Consequently, $f_{m}(x, y) \equiv f^{\prime}(x, y) \bmod (x, y)^{m+1}$ if and only if $c_{0}^{p^{n}-1} \lambda^{\prime}=\lambda$. Since f and f^{\prime} have height exactly n, the constants λ and λ^{\prime} are invertible; thus $R(m) \simeq R(m-1)\left[c_{0}\right] /\left(c_{0}^{p_{n}-1}-\frac{\lambda}{\lambda^{\prime}}\right)$.
(d) Suppose that $m=p^{n+n^{\prime}}$ for $n^{\prime}>0$. Let $c=c_{p^{n^{\prime}-1}}$, so that $R(m) \simeq R(m-1)[c] / J$, where J is the ideal generated by coefficients on monomials of degree m in $f_{m}(x, y)-f^{\prime}(x, y)$. This is the tricky part. Since $f_{m-1}(x, y) \equiv f^{\prime}(x, y) \bmod (x, y)^{m}$, we can write

$$
f_{m-1}(x, y) \equiv f^{\prime}(x, y)+\mu \sum_{0<i<m} \frac{\binom{m}{i}}{p} x^{i} y^{m-i}
$$

for some constant μ. Let $z=z(x, y)$ be as in the proof of Lemma 3, so that $z(x, y) \in(x, y)^{m}$. We have

$$
f_{m-1}(x, y)=f_{m-1}\left(f_{m}(x, y), z\right) \equiv f_{m}(x, y)+z \quad \bmod (x, y)^{m+1}
$$

Consequently, we have $f_{m}(x, y) \equiv f^{\prime}(x, y) \bmod (x, y)^{m+1}$ if and only if $z \equiv \mu \sum_{0<i<m} \frac{\binom{m}{i}}{p} x^{i} y^{m-i}$ $\bmod (x, y)^{m+1}$.
The proof of Lemma 3 gives

$$
z \equiv c f_{m-1}(x, y)^{p^{n^{\prime}}}-f_{m-1}\left(c x^{p^{n^{\prime}}}, c y^{p^{n^{\prime}}}\right) \quad \bmod (x, y)^{m+1}
$$

We have

$$
f_{m-1}(x, y) \equiv f^{\prime}(x, y) \equiv x+y+\lambda \sum_{0<j<p^{n}} \frac{\binom{p^{n}}{j}}{p} x^{j} y^{p^{n}-j} \bmod (x, y)^{p^{n}+1}
$$

It follows that

$$
z \equiv\left(c \lambda^{p^{n^{\prime}}}-\lambda c^{p^{n}}\right) \sum_{0<j<p^{n}} \frac{\binom{p^{n}}{j}}{p} x^{p^{n^{\prime}}{ }_{j}} y^{m-p^{n^{\prime}}} j \quad \bmod (x, y)^{m+1}
$$

Thus $f_{m}(x, y) \equiv f^{\prime}(x, y) \bmod (x, y)^{m+1}$ if and only if the following conditions are satisfied:
(i) The coefficients $\mu \frac{\binom{p^{n+n^{\prime}}}{i}}{p}$ vanishes when i is not divisible by p^{n}.
(ii) For $0<j<p^{n^{\prime}}$, we have

$$
\mu \frac{\binom{p^{n+n^{\prime}}}{p^{n} j}}{p}=\left(\lambda^{p^{n^{\prime}}} c-\lambda c^{p^{n^{n}}}\right) \frac{\binom{p^{p^{\prime}}}{j}}{p}
$$

We claim that these conditions are satisfied if and only if $c^{p^{n}}-\lambda^{p^{n^{\prime}}-1} c+\frac{\mu}{\lambda}=0$. It follows that $R(m)=R(m-1)[c] /\left(c^{p^{n}}-\lambda^{p^{n^{\prime}}-1} c+\frac{\mu}{\lambda}\right)$ is a finite étale extension of $R(m-1)$. To complete the proof, we verify the following combinatorial identity:
Lemma 4. Let n be an integer. Then

$$
\binom{p^{n}}{i} \equiv\left\{\begin{array}{ll}
\binom{p}{j} & \text { if } i=p^{n-1} j \\
0 & \text { otherwise }
\end{array} \quad \bmod p^{2} .\right.
$$

Proof. Let $G=\mathbf{Z} / p^{n} \mathbf{Z}$ be a cyclic group. Then G acts by translation on the set S of all i-element subsets of G. Let G^{\prime} be the subgroup $p \mathbf{Z} / p^{n} \mathbf{Z}$. Any point of S is either fixed by G^{\prime}, or is fixed by a smaller subgroup and therefore has size divisible by p^{2}. It follows that the cardinality $|S|$ is congruent modulo p^{2} to the cardinality of the fixed point set $\left|S^{G^{\prime}}\right|$, which is the number of ways to choose a subset of the quotient G / G^{\prime} having cardinality $j=\frac{i}{p^{n-1}}$.

