
The Stratification of MFG (Lecture 13)

April 27, 2010

Let p be a prime number, fixed throughout this lecture. Our goal is to describe the structure of the
moduli stack MFG×Spec Z(p) of formal groups over p-local rings.

We begin by recalling a few definitions from the previous lecture. If f(x, y) ∈ R[[x, y]] is a formal group
law over a Z(p)-algebra R, we let vn denote the coefficient on tp

n

in the p-series [p](t). We obtain a sequence
of elements v0 = p, v1, . . . ∈ R. We say that f has height ≥ n if the elements vi vanish for i < n, and height
exactly n if it has height ≥ n and vn is invertible.

Restricting our attention to the universal case, we can regard v0, v1, . . . as elements of the Lazard ring
L. We now describe the relationship between these elements and our presentation of L as a polynomial
ring Z[t1, t2, . . .]. In our earlier discussion, the coordinates ti were not canonically determined. What is
canonically determined is the isomorphism (I/I2)2n ' Ztn, where I is the ideal generated by elements of
positive degree. We can regard each vi as an element of L2(pi−1), so that vi has a canonically defined image
in (I/I2)2(pi−1) ' Ztpi−1.

Proposition 1. The image of vn ∈ (I/I2)2(pn−1) ' Z is pp
n−1 − 1. That is, we can write vn = −tpn−1 +

pp
n−1tpn−1 + decomposables.

Proof. Let k = pn − 1. The homomorphism L→ Z⊕ (I/I2)2k ' Z⊕ Ztk classifies the formal group law

f(x, y) = x+ y +
∑

0<i<pn

1
p

(
pn

i

)
tkx

iyp
n−i.

We obtain formally f(x, y) = x+ y + tk
p ((x+ y)p

n − xpn − ypn

). It follows by induction on a that the series
[a] is given by [a](t) = at + tk

p ((at)p
n − atpn

). In particular, the coefficient of tp
n

in [p](t) is tk
p (pp

n − p) =
(pp

n−1 − 1)tk.

It follows that after localizing at the prime p, we can choose another isomorphism L(p) ' Z(p)[t1, t2, . . .],
where each tpn−1 is given by vn. In other words, the elements vn in L can be regarded as the “interesting”
generators of L (under the isomorphism L ' π∗MU of Quillen’s theorem, these are the generators of Adams
filtration 1).

Corollary 2. Let k be a field of characteristic p. Then, for every integer 1 ≤ n ≤ ∞, there exists a formal
group law of height n over k.

Proof. If n = ∞, we can take f(x, y) ∈ k[[x, y]] to be the additive formal group law f(x, y) = x + y. If
n <∞, we take f to be any formal group law classified by a map L ' Z[t1, t2, . . .]→ k such that ti 7→ 0 for
i < pn − 1, but tpn−1 7→ 1.

Recall that the condition that a formal group f(x, y) ∈ R[[x, y]] have height ≥ n depends only on the
isomorphism class of f . Moreover, it is a local condition: that is, if we are given a collection of elements
a1, . . . , ak ∈ R with a1 + · · ·+ak = 1, then f has height ≥ n over R if and only if f has height ≥ n over R[ 1

ai
]

for all i. Consequently, if F : AlgR → Ab is a formal group over R which is not necessarily coordinatizable,
it makes sense to demand that F has height ≥ n: this is the requirement that F |AlgR′ have height ≥ n,
whenever R′ is an R-algebra such that F |AlgR′ is coordinatizable.
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Remark 3. Here is another interpretation of the height of a formal group. Let F : AlgR → Ab be a
formal group of height exactly n. Then F[p] = ker(F

p→ F) is representable by a finite flat group scheme
over R, of rank pn. To see this, it suffices to work locally: we may therefore assume that F is defined
by a formal group law f(x, y) ∈ R[[x, y]] with p-series [p](t) = λtp

n

+ · · · where λ is invertible. Then
F[p] = SpecR[[t]]/(λtp

n

+ · · · ).
For example, if F is the formal multiplicative group, then F[p] is the group scheme µp, defined by

µp(A) = {a ∈ A : ap = 1}. We have µp = SpecR[a]/(ap − 1), which has rank p.

We can define a closed substack M
≥n
FG of MFG×Spec Z(p) as follows: for every commutative Z(p)-algebra

R, M
≥n
FG(R) is the category of formal groups of height ≥ n over R (with morphisms given by isomorphisms).

We have M
≥n
FG = Spec(L(p)/(v0, . . . , vn−1))/G+, where G+ is the group scheme of coordinate transformations

defined in the previous lecture. This makes sense because the ideal (v0, . . . , vn−1) is G+-invariant: this is a
translation of the statement that the condition of having height ≥ n is an isomorphism invariant condition.

Remark 4. The elements vi ∈ L are not themselves G-invariant: that is, if f and f ′ are isomorphic formal
group laws over a commutative ring R, then the p-series [p]f (t) and [p]f ′(t) are generally different. However,
if we assume that f and f ′ have height ≥ n and g(t) = b0t + b1t

2 + . . . is an invertible power series such
that gf(x, y) = f ′(g(x), g(y)), then g ◦ [p]f ' [p]f ′ ◦ g′. If [p]f (t) = vnt

pn

+ · · · and [p]f ′ = v′nt
pn

+ · · · ,
then examining leading terms gives b0vn = bp

n

0 v′n. In other words, as an element in the quotient ring
L/(v0, . . . , vn−1), vn is invariant under the subgroup G ⊆ G+, and is acted on by the quotient G+/G ' Gm

by the character Gm
pn−1→ Gm. In more invariant terms, this means that we can descend vn to a section of

the line bundle ωp
n−1 on the moduli stack M

≥n
FG.

For 0 ≤ n <∞, we let Mn
FG denote the locally closed substack

M
≥n
FG−M

≥n+1
FG = (SpecL(p)[v−1

n ]/(v0, . . . , vn−1))/G+

of MFG×Spec Z(p). Also let M∞FG = M
≥∞
FG = (SpecL/(v0, v1, . . .))/G+ denote the moduli stack of formal

groups having infinite height. Thus Mn
FG are the open strata for a stratification of the moduli stack MFG.

We will see that each stratum as a relatively simple structure.

Example 5. The moduli stack M0
FG of formal groups of height 0 can be identified with MFG×Spec Q '

BGm.

Note that M
≥1
FG = MFG×Spec Fp. For the remainder of the discussion, we will work with commutative

rings R which have characteristic p: that is, we will assume that p = 0 in R.
The following characterization of height is convenient:

Proposition 6. Let R be a commutative ring such that p = 0 in R, and let f(x, y) ∈ R[[x, y]] be a formal
group law over R. For 1 ≤ n ≤ ∞, the following conditions are equivalent:

(1) The formal group law f has height ≥ n.

(2) There exists a formal group law f ′ which is isomorphic to f such that f ′(x, y) ≡ x + y mod (x, y)p
n

is congruent to x+ y modulo (x, y)p
n

.

Lemma 7. Let R be a commutative ring and let f, f ′ ∈ R[[x, y]] be formal group laws. Suppose that f(x, y)
is congruent to f ′(x, y) modulo the ideal (x, y)m. Let

d =

{
p if m = pn

0 otherwise.

Then there exists a unique constant λ ∈ R such that f(x, y) is congruent to f ′(x, y) +
∑

0<i<m
λ
d

(
m
i

)
xiym−i.

modulo (x, y)m+1.
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Proof. There exist constants {λi,j}i+j=m such that f(x, y) is congruent to f ′(x, y) +
∑

0≤i≤m λi,m−ix
iym−i

modulo (x, y)m+1. Since f(x, 0) = f ′(x, 0) = x, we conclude that λm,0 = 0; similarly λ0,m = 0.
We have

f(f(x, y), z)− f ′(f ′(x, y), z) = f(x, f(y, z))− f ′(x, f ′(y, z)).

Extracting the coefficient of xiyjzk when i+ j + k = m and i, j, k > 0, we conclude that(
i+ j

j

)
λi+j,k =

(
j + k

j

)
λi,j+k.

In Lecture 3, we saw that all solutions to these equations are as stated in the Lemma.

Proof of Proposition 6. First assume that n is finite. We prove by induction on m < pn that, after a change
of variable, we can assume that f(x, y) is congruent to x+y modulo (x, y)m. By the inductive hypothesis, we
may assume that the congruence holds modulo (x, y)m−1. Let d be defined as in Lemma 7, so that f(x, y)
is congruent to x + y +

∑
0<i<m

λ
d

(
m
i

)
xiym−i for some λ ∈ R. If m is not a power of p, then we define

f ′(x, y) = g−1f(g(x), g(y)) where g(t) = t + λtm

d ; a simple calculation shows that f ′(x, y) is congruent to
x + y modulo (x, y)m. If m = pn

′
then we necessarily have n′ < n. We claim that f(x, y) is automatically

congruent to x+ y modulo (x, y)m. This follows from the calculation of the previous lecture: f is classified
by a homomorphism L ' Z[t1, . . . , ] → R, and we wish to show that the image of each tm′ is equal to zero
for m′ < m. By the inductive hypothesis, this holds for m′ < m − 1. Then the image of tm−1 is given by
−vn′ (here vn′ is the coefficient of tp

n′

in the p-series [p](t)), and therefore vanishes since we have assumed
that f has height ≥ n.

Suppose now that n is infinite. Using the above construction, we define a sequence of formal group
laws fm(x, y) which are isomorphic to f such that fm(x, y) is congruent to x+ y modulo (x, y)m. We have
fm(x, y) = g−1

m f(gm(x), gm(y)). By construction, the power series gm(t) converge in the t-adic topology to
an invertible power series g(t); then g−1f(g(x), g(y)) = x+ y is the additive formal group.

Corollary 8. Let f be a formal group law of infinite height over a commutative ring R (necessarily with
p = 0 in R). Then f is isomorphic to the additive formal group law f ′(x, y) = x+ y.

Remark 9. It follows that we can identify M∞FG with the classifying stack for the group of automorphisms
of the additive formal group f(x, y) = x+ y ∈ Fp[[x, y]]. This is the group scheme whose R-points are given
by power series of the form

g(t) = a0t+ a1t
p + a2t

p2 + . . . ∈ R[[t]],

where a0 is invertible. This group scheme is closely related to the structure of the (mod p) Steenrod algebra.

We now study formal groups of height n where 0 < n <∞. The basic result is the following:

Theorem 10 (Lazard). Let k be an algebraically closed field of characteristic p. Then two formal group
laws f(x, y), f ′(x, y) ∈ k[[x, y]] are isomorphic if and only if they have the same height.

Here the condition that k be algebraically closed can be weakened, but not completely removed. To prove
Theorem 10 we need to write down an isomorphism between f and f ′: that is, we need to find an invertible
power series g(t) = b0t+ b1t

2 + . . . such that gf(x, y) = f ′(g(x), g(y)). This identity amounts to a system of
equations that the coefficients bi must satisfy. Theorem 10 asserts that these equations can be solved with
values in an algebraically closed field. In fact, we can be much more precise. Let f(x, y), f ′(x, y) ∈ R[[x, y]]
be formal group laws of height exactly n > 0 over a commutative ring R. Then we can define a ring
R′ = R[b±1

0 , b1, . . .]/I which parametrizes isomorphisms between f and f ′: take I to be the ideal generated
by the coefficients on xiyj in the expression gf(x, y)− f ′(g(x), g(y)). A more precise version of Theorem 10
can be formulated as follows:
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Theorem 11. Let f(x, y), f ′(x, y) ∈ R[[x, y]] be formal group laws of height exactly n > 0 and let R′ be
defined as above. Then R′ isomorphic to the direct limit of a system of (injective) finite etale maps

R = R(0) ↪→ R(1) ↪→ R(2) ↪→ · · ·

When R is an algebraically closed field k, each R(i) is a product of copies of k. It follows that we can
choose a compatible system of ring homomorphisms R(i) → k, which together define a map R′ → k giving
rise to the desired isomorphism of f with f ′. In fact, we need not assume that k is algebraically closed: it
is enough to suppose that k is separably closed or, more generally, that k is a strictly Henselian ring.

We will prove Theorem 11 in the next lecture.
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