The Stratification of \mathcal{M}_{FG} (Lecture 13)

April 27, 2010

Let p be a prime number, fixed throughout this lecture. Our goal is to describe the structure of the moduli stack $\mathcal{M}_{FG} \times \operatorname{Spec} \mathbf{Z}_{(p)}$ of formal groups over p-local rings.

We begin by recalling a few definitions from the previous lecture. If $f(x, y) \in R[[x, y]]$ is a formal group law over a $\mathbf{Z}_{(p)}$ -algebra R, we let v_n denote the coefficient on t^{p^n} in the p-series [p](t). We obtain a sequence of elements $v_0 = p, v_1, \ldots \in R$. We say that f has $height \ge n$ if the elements v_i vanish for i < n, and heightexactly n if it has height $\ge n$ and v_n is invertible.

Restricting our attention to the universal case, we can regard v_0, v_1, \ldots as elements of the Lazard ring L. We now describe the relationship between these elements and our presentation of L as a polynomial ring $\mathbf{Z}[t_1, t_2, \ldots]$. In our earlier discussion, the coordinates t_i were not canonically determined. What is canonically determined is the isomorphism $(I/I^2)_{2n} \simeq \mathbf{Z}t_n$, where I is the ideal generated by elements of positive degree. We can regard each v_i as an element of $L_{2(p^i-1)}$, so that v_i has a canonically defined image in $(I/I^2)_{2(p^i-1)} \simeq \mathbf{Z}t_{p^i-1}$.

Proposition 1. The image of $v_n \in (I/I^2)_{2(p^n-1)} \simeq \mathbb{Z}$ is $p^{p^n-1}-1$. That is, we can write $v_n = -t_{p^n-1} + p^{p^n-1}t_{p^n-1} + decomposables$.

Proof. Let $k = p^n - 1$. The homomorphism $L \to \mathbf{Z} \oplus (I/I^2)_{2k} \simeq \mathbf{Z} \oplus \mathbf{Z}t_k$ classifies the formal group law

$$f(x,y) = x + y + \sum_{0 < i < p^n} \frac{1}{p} {p^n \choose i} t_k x^i y^{p^n - i}.$$

We obtain formally $f(x, y) = x + y + \frac{t_k}{p}((x+y)^{p^n} - x^{p^n} - y^{p^n})$. It follows by induction on a that the series [a] is given by $[a](t) = at + \frac{t_k}{p}((at)^{p^n} - at^{p^n})$. In particular, the coefficient of t^{p^n} in [p](t) is $\frac{t_k}{p}(p^{p^n} - p) = (p^{p^n-1}-1)t_k$.

It follows that after localizing at the prime p, we can choose another isomorphism $L_{(p)} \simeq \mathbf{Z}_{(p)}[t_1, t_2, \ldots]$, where each t_{p^n-1} is given by v_n . In other words, the elements v_n in L can be regarded as the "interesting" generators of L (under the isomorphism $L \simeq \pi_*$ MU of Quillen's theorem, these are the generators of Adams filtration 1).

Corollary 2. Let k be a field of characteristic p. Then, for every integer $1 \le n \le \infty$, there exists a formal group law of height n over k.

Proof. If $n = \infty$, we can take $f(x, y) \in k[[x, y]]$ to be the additive formal group law f(x, y) = x + y. If $n < \infty$, we take f to be any formal group law classified by a map $L \simeq \mathbf{Z}[t_1, t_2, \ldots] \to k$ such that $t_i \mapsto 0$ for $i < p^n - 1$, but $t_{p^n-1} \mapsto 1$.

Recall that the condition that a formal group $f(x, y) \in R[[x, y]]$ have height $\geq n$ depends only on the isomorphism class of f. Moreover, it is a *local* condition: that is, if we are given a collection of elements $a_1, \ldots, a_k \in R$ with $a_1 + \cdots + a_k = 1$, then f has height $\geq n$ over R if and only if f has height $\geq n$ over $R[\frac{1}{a_i}]$ for all i. Consequently, if $\mathcal{F} : \operatorname{Alg}_R \to \operatorname{Ab}$ is a formal group over R which is not necessarily coordinatizable, it makes sense to demand that \mathcal{F} has height $\geq n$: this is the requirement that $\mathcal{F}|\operatorname{Alg}_{R'}$ have height $\geq n$, whenever R' is an R-algebra such that $\mathcal{F}|\operatorname{Alg}_{R'}$ is coordinatizable.

Remark 3. Here is another interpretation of the height of a formal group. Let $\mathcal{F} : \operatorname{Alg}_R \to \operatorname{Ab}$ be a formal group of height exactly n. Then $\mathcal{F}[p] = \operatorname{ker}(\mathcal{F} \xrightarrow{p} \mathcal{F})$ is representable by a finite flat group scheme over R, of rank p^n . To see this, it suffices to work locally: we may therefore assume that \mathcal{F} is defined by a formal group law $f(x,y) \in R[[x,y]]$ with p-series $[p](t) = \lambda t^{p^n} + \cdots$ where λ is invertible. Then $\mathcal{F}[p] = \operatorname{Spec} R[[t]]/(\lambda t^{p^n} + \cdots)$.

For example, if \mathcal{F} is the formal multiplicative group, then $\mathcal{F}[p]$ is the group scheme μ_p , defined by $\mu_p(A) = \{a \in A : a^p = 1\}$. We have $\mu_p = \operatorname{Spec} R[a]/(a^p - 1)$, which has rank p.

We can define a closed substack $\mathcal{M}_{\mathrm{FG}}^{\geq n}$ of $\mathcal{M}_{\mathrm{FG}} \times \operatorname{Spec} \mathbf{Z}_{(p)}$ as follows: for every commutative $\mathbf{Z}_{(p)}$ -algebra R, $\mathcal{M}_{\mathrm{FG}}^{\geq n}(R)$ is the category of formal groups of height $\geq n$ over R (with morphisms given by isomorphisms). We have $\mathcal{M}_{\mathrm{FG}}^{\geq n} = \operatorname{Spec}(L_{(p)}/(v_0, \ldots, v_{n-1}))/G^+$, where G^+ is the group scheme of coordinate transformations defined in the previous lecture. This makes sense because the ideal (v_0, \ldots, v_{n-1}) is G^+ -invariant: this is a translation of the statement that the condition of having height $\geq n$ is an isomorphism invariant condition.

Remark 4. The elements $v_i \in L$ are not themselves *G*-invariant: that is, if *f* and *f'* are isomorphic formal group laws over a commutative ring *R*, then the *p*-series $[p]_f(t)$ and $[p]_{f'}(t)$ are generally different. However, if we assume that *f* and *f'* have height $\geq n$ and $g(t) = b_0t + b_1t^2 + \ldots$ is an invertible power series such that gf(x,y) = f'(g(x),g(y)), then $g \circ [p]_f \simeq [p]_{f'} \circ g'$. If $[p]_f(t) = v_nt^{p^n} + \cdots$ and $[p]_{f'} = v'_nt^{p^n} + \cdots$, then examining leading terms gives $b_0v_n = b_0^{p^n}v'_n$. In other words, as an element in the quotient ring $L/(v_0,\ldots,v_{n-1}), v_n$ is invariant under the subgroup $G \subseteq G^+$, and is acted on by the quotient $G^+/G \simeq \mathbb{G}_m$ by the character $\mathbb{G}_m \xrightarrow{p^n-1} \mathbb{G}_m$. In more invariant terms, this means that we can descend v_n to a section of the line bundle $\omega^{p^{n-1}}$ on the moduli stack $\mathcal{M}_{\mathrm{FG}}^{\geq n}$.

For $0 \leq n < \infty$, we let \mathcal{M}_{FG}^n denote the locally closed substack

$$\mathcal{M}_{\mathrm{FG}}^{\geq n} - \mathcal{M}_{\mathrm{FG}}^{\geq n+1} = (\operatorname{Spec} L_{(p)}[v_n^{-1}]/(v_0, \dots, v_{n-1}))/G^+$$

of $\mathcal{M}_{\mathrm{FG}} \times \operatorname{Spec} \mathbf{Z}_{(p)}$. Also let $\mathcal{M}_{\mathrm{FG}}^{\infty} = \mathcal{M}_{\mathrm{FG}}^{\geq \infty} = (\operatorname{Spec} L/(v_0, v_1, \ldots))/G^+$ denote the moduli stack of formal groups having infinite height. Thus $\mathcal{M}_{\mathrm{FG}}^n$ are the open strata for a stratification of the moduli stack $\mathcal{M}_{\mathrm{FG}}$. We will see that each stratum as a relatively simple structure.

Example 5. The moduli stack \mathcal{M}_{FG}^0 of formal groups of height 0 can be identified with $\mathcal{M}_{FG} \times \operatorname{Spec} \mathbf{Q} \simeq B\mathbb{G}_m$.

Note that $\mathcal{M}_{\mathrm{FG}}^{\geq 1} = \mathcal{M}_{\mathrm{FG}} \times \operatorname{Spec} \mathbf{F}_p$. For the remainder of the discussion, we will work with commutative rings R which have characteristic p: that is, we will assume that p = 0 in R.

The following characterization of height is convenient:

Proposition 6. Let R be a commutative ring such that p = 0 in R, and let $f(x, y) \in R[[x, y]]$ be a formal group law over R. For $1 \le n \le \infty$, the following conditions are equivalent:

- (1) The formal group law f has height $\geq n$.
- (2) There exists a formal group law f' which is isomorphic to f such that $f'(x,y) \equiv x + y \mod (x,y)^{p^n}$ is congruent to x + y modulo $(x,y)^{p^n}$.

Lemma 7. Let R be a commutative ring and let $f, f' \in R[[x, y]]$ be formal group laws. Suppose that f(x, y) is congruent to f'(x, y) modulo the ideal $(x, y)^m$. Let

$$d = \begin{cases} p & \text{if } m = p^n \\ 0 & \text{otherwise.} \end{cases}$$

Then there exists a unique constant $\lambda \in R$ such that f(x, y) is congruent to $f'(x, y) + \sum_{0 < i < m} \frac{\lambda}{d} {m \choose i} x^i y^{m-i}$. modulo $(x, y)^{m+1}$. Proof. There exist constants $\{\lambda_{i,j}\}_{i+j=m}$ such that f(x,y) is congruent to $f'(x,y) + \sum_{0 \le i \le m} \lambda_{i,m-i} x^i y^{m-i}$ modulo $(x,y)^{m+1}$. Since f(x,0) = f'(x,0) = x, we conclude that $\lambda_{m,0} = 0$; similarly $\lambda_{0,m} = 0$.

$$f(f(x,y),z) - f'(f'(x,y),z) = f(x,f(y,z)) - f'(x,f'(y,z)).$$

Extracting the coefficient of $x^i y^j z^k$ when i + j + k = m and i, j, k > 0, we conclude that

$$\binom{i+j}{j}\lambda_{i+j,k} = \binom{j+k}{j}\lambda_{i,j+k}$$

In Lecture 3, we saw that all solutions to these equations are as stated in the Lemma.

Proof of Proposition 6. First assume that n is finite. We prove by induction on $m < p^n$ that, after a change of variable, we can assume that f(x, y) is congruent to x + y modulo $(x, y)^m$. By the inductive hypothesis, we may assume that the congruence holds modulo $(x, y)^{m-1}$. Let d be defined as in Lemma 7, so that f(x, y)is congruent to $x + y + \sum_{0 < i < m} \frac{\lambda}{d} {m \choose i} x^i y^{m-i}$ for some $\lambda \in R$. If m is not a power of p, then we define $f'(x, y) = g^{-1}f(g(x), g(y))$ where $g(t) = t + \frac{\lambda t^m}{d}$; a simple calculation shows that f'(x, y) is congruent to x + y modulo $(x, y)^m$. If $m = p^{n'}$ then we necessarily have n' < n. We claim that f(x, y) is automatically congruent to x + y modulo $(x, y)^m$. This follows from the calculation of the previous lecture: f is classified by a homomorphism $L \simeq \mathbb{Z}[t_1, \ldots,] \to R$, and we wish to show that the image of each $t_{m'}$ is equal to zero for m' < m. By the inductive hypothesis, this holds for m' < m - 1. Then the image of t_{m-1} is given by $-v_{n'}$ (here $v_{n'}$ is the coefficient of $t^{p^{n'}}$ in the p-series [p](t)), and therefore vanishes since we have assumed that f has height > n.

Suppose now that n is infinite. Using the above construction, we define a sequence of formal group laws $f_m(x,y)$ which are isomorphic to f such that $f_m(x,y)$ is congruent to x + y modulo $(x, y)^m$. We have $f_m(x,y) = g_m^{-1} f(g_m(x), g_m(y))$. By construction, the power series $g_m(t)$ converge in the t-adic topology to an invertible power series g(t); then $g^{-1} f(g(x), g(y)) = x + y$ is the additive formal group.

Corollary 8. Let f be a formal group law of infinite height over a commutative ring R (necessarily with p = 0 in R). Then f is isomorphic to the additive formal group law f'(x, y) = x + y.

Remark 9. It follows that we can identify $\mathcal{M}_{FG}^{\infty}$ with the classifying stack for the group of automorphisms of the additive formal group $f(x, y) = x + y \in \mathbf{F}_p[[x, y]]$. This is the group scheme whose *R*-points are given by power series of the form

$$g(t) = a_0 t + a_1 t^p + a_2 t^{p^2} + \ldots \in R[[t]],$$

where a_0 is invertible. This group scheme is closely related to the structure of the (mod p) Steenrod algebra.

We now study formal groups of height n where $0 < n < \infty$. The basic result is the following:

Theorem 10 (Lazard). Let k be an algebraically closed field of characteristic p. Then two formal group laws $f(x, y), f'(x, y) \in k[[x, y]]$ are isomorphic if and only if they have the same height.

Here the condition that k be algebraically closed can be weakened, but not completely removed. To prove Theorem 10 we need to write down an isomorphism between f and f': that is, we need to find an invertible power series $g(t) = b_0 t + b_1 t^2 + \ldots$ such that gf(x, y) = f'(g(x), g(y)). This identity amounts to a system of equations that the coefficients b_i must satisfy. Theorem 10 asserts that these equations can be solved with values in an algebraically closed field. In fact, we can be much more precise. Let $f(x, y), f'(x, y) \in R[[x, y]]$ be formal group laws of height exactly n > 0 over a commutative ring R. Then we can define a ring $R' = R[b_0^{\pm 1}, b_1, \ldots]/I$ which parametrizes isomorphisms between f and f': take I to be the ideal generated by the coefficients on $x^i y^j$ in the expression gf(x, y) - f'(g(x), g(y)). A more precise version of Theorem 10 can be formulated as follows: **Theorem 11.** Let $f(x, y), f'(x, y) \in R[[x, y]]$ be formal group laws of height exactly n > 0 and let R' be defined as above. Then R' isomorphic to the direct limit of a system of (injective) finite etale maps

$$R = R(0) \hookrightarrow R(1) \hookrightarrow R(2) \hookrightarrow \cdots$$

When R is an algebraically closed field k, each R(i) is a product of copies of k. It follows that we can choose a compatible system of ring homomorphisms $R(i) \to k$, which together define a map $R' \to k$ giving rise to the desired isomorphism of f with f'. In fact, we need not assume that k is algebraically closed: it is enough to suppose that k is separably closed or, more generally, that k is a strictly Henselian ring.

We will prove Theorem 11 in the next lecture.