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Our next goal in this course is to understand the structure of the moduli stack MFG of formal groups.
Our starting point is the following result from Lecture 2:

Proposition 1. Let R be a ring of characteristic zero. Then, for every formal group law f ∈ R[[x, y]], there
exist a unique power series g(t) = t+ b1t

2 + b2t
3 + . . . such that f(x, y) = g(g−1(x) + g−1(y)).

Corollary 2. The quotient stack Ms
FG× Spec Q = (SpecL/G)× Spec Q is isomorphic to Spec Q.

Corollary 3. The quotient stack MFG× Spec Q = (SpecL/G+) × Spec Q is isomorphic to the classifying
stack BGm (over Spec Q). In other words, if R is a ring of characteristic zero, then every formal group over
R is determined (up to unique isomorphism) by its Lie algebra.

Example 4. Let f(x, y) = x+ y+xy be the multiplicative formal group law. If R is a ring of characteristic
zero, then f is isomorphic to the additive formal group law via the isomorphism g(t) = et − 1 = t + 1

2 t
2 +

1
6 t

3 + · · · .

The coefficients of the power series et− 1 are not integral. This suggests that over rings which are not of
characteristic zero, the additive and multiplicative formal groups are not isomorphic. To prove this, we need
an invariant which can be used to tell two formal groups apart. First, we need a brief digression concerning
endomorphisms of a formal group law.

Definition 5. Let f ∈ R[[x, y]] be a formal group law over R. An endomorphism of f is a power series
g(t) ∈ tR[[t]] such that f(g(x), g(y)) = gf(x, y).

To prove Proposition 1, we need to introduce the notion of a translation invariant differential on Spf R[[t]].
First, let R[[t]]dt denote a free module of rank 1 over R[[t]]; we will call elements of R[[t]] differentials. Given
a differential g(t)dt, we write f∗(g(t)dt) = g(f(x, y))(∂ f

∂ xdx + ∂ f
∂ y dy) ∈ R[[x, y]]{dx, dy}. We will say that

g(t)dt is an translation invariant differential if we have f∗(g(t)dt) = g(x)dx+ g(y)dy.

Example 6. Let f(x, y) = x+y be the additive formal group law. Then dt ∈ R[[t]] is a translation invariant
differential.

Example 7. Let f(x, y) = x+ y+xy is a multiplicative formal group law. Then dt
1+t = dt− tdt+ t2dt+ · · ·

is a translation invariant differential.

There exists a unique translation invariant differential of the form ω = dt+ c1tdt+ . . .. Moreover, R[[t]]dt
can be identified with the free module R[[t]]ω.

Now suppose that h(t) = a1t+a2t
2 + · · · ∈ tR[[t]]. Composition with h determines a map h∗ from R[[t]]dt

to itself, given by h∗(g(t)dt) = (g ◦ h)(t)dh, where dh = a1dt + 2a2tdt + · · · . Note that h∗ = 0 if and only
if each coefficient iai = 0: since p = 0 in R, this is equivalent to the requirement that ai vanishes for i not
divisible by p. Equivalently, h∗ = 0 if and only if we can write h(t) = h′(tp) for some other power series h′.

Suppose that f and f ′ are formal groups over R, and that h is a morphism from f to f ′: that is, h satisfies
hf(x, y) = f ′(h(x), h(y)). Then h∗ carries invariant differentials with respect to f ′ to invariant differentials
with respect to f . In particular, if we let ωf and ωf ′ be defined as above, then we have h∗ωf ′ = λωf for some
constant λ ∈ R. Unwinding the definitions, we see that h(t) ≡ λt mod (t2). We conclude the following:
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Claim 8. Let f(x, y), f ′(x, y) ∈ R[[x, y]] be formal group laws over a ring R such that p = 0 in R, and let
h ∈ tR[[t]] satisfy hf(x, y) = f ′(h(x), h(y)). Then one of the following conditions holds:

(1) There exists λ 6= 0 ∈ R such that h(t) = λt+ · · · .

(2) There exists another power series h′ such that h(t) = h′(tp).

Let f ′(x, y) be the power series defined by the equation f ′(xp, yp) = f(x, y)p (that is, f ′ is obtained from
f by raising all coefficients to the pth power). In the second case, we get

f ′(h0(xp), h0(yp)) = f ′(h(x), h(y)) = hf(x, y) = h0(f(x, y)p) = h0f
p(xp, yp),

so that h0f
p(x, y) = f ′(h0(x), h0(y)). that is, h0 can be regarded as a morphism from fp into f ′. Repeating

the above argument, we arrive at the following:

Claim 9. Let R be a commutative ring with p = 0, let f(x, y), f ′(x, y) ∈ R[[x, y]] be formal group laws,
and let h be a power series satisfying hf(x, y) = f ′(h(x), h(y)). If h 6= 0, then there exists n ≥ 0 such that
h(t) = h′(tp

n

) with h′(t) = λt+O(t2), λ 6= 0.

Definition 10. Let f(x, y) ∈ R[[x, y]] be a formal group law over a commutative ring R. For every nonneg-
ative integer n, we define the n-series [n](t) ∈ R[[t]] as follows:

(1) If n = 0, we set [n](t) = 0.

(2) If n > 0, we set [n](t) = f([n− 1](t), t).

Remark 11. For every integer n, the n-series [n] determines a homomorphism from the formal group f to
itself. That is, we have f([n](x), [n](y)) = [n]f(x, y).

Since f(x, y) = x+y+ · · · , we immediately deduce that [n](t) = nt+O(t2). Consequently, if p is a prime
number such that p = 0 inR, then the linear term of [p](t) vanishes: that is, we can write [p](t) = ctk+O(tk+1)
for some k > 1.

Since [p] is an endomorphism of f , we immediately obtain the following:

Proposition 12. Let R be a commutative ring in which p = 0 and let f be a formal group law over R. Then
either [p](t) = 0, or [p](t) = λtp

n

+O(tp
n+1) for some n > 0.

Definition 13. Let f be a formal group law over a commutative ring R, and fix a prime number p. We let
vn denote the coefficient of tp

n

in the p-series [p]. We will say that f has height ≥ n if vi = 0 for i < n. We
will say that f has height exactly n if it has height ≥ n and vn ∈ R is invertible.

Remark 14. We have v0 = p. Thus f has height ≥ 1 if and only if p = 0 in R, and height exactly zero if
and only if p is invertible in R.

Remark 15. Let f and f ′ be formal group laws over a commutative ring R, having p-series [p]f and [p]f ′ .
If g(t) is an isomorphism between f and f ′, then we have [p]f ′(t) = (g ◦ [p]f ◦ g−1)(t). It follows immediately
that the heights of f and f ′ are the same.

Example 16. Let f(x, y) = x + y + xy be the formal multiplicative group. Then [n](t) = (1 + t)n − 1. If
p = 0 in R, then [p](t) = (1 + t)p − 1 = tp; thus f has height exactly 1.

Example 17. Let f(x, y) = x+y be the formal multiplicative group over a commutative ring R with p = 0.
Then [p](t) = 0, so f has infinite height. In the next lecture, we will see that the converse holds: if f is a
formal group law of infinite height, then f is isomorphic to the additive group.

It follows from Examples 16 and 17 that the additive and multiplicative formal group laws are not
isomorphic over any commutative ring in which p = 0.
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