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The following result provides an intrinsic characterization of von Neumann algebras:

Theorem 1. Let A be a C*-algebra. Suppose there exists a Banach space E and a Banach space isomorphism
A~ EY. Then there exists a von Neumann algebra B and an isomorphism of C*-algebras A — B (in other
words, A admits the structure of a von Neumann algebra).

We will prove Theorem 1 under the following additional assumption:

(*) For each a € A, the operations l,,7, : A — A given by left multiplication on A are continuous with
respect to the weak *-topology (arising from the identification A ~ EV).

Remark 2. We have seen that every von Neumann algebra admits a Banach space predual, such that the
weak x-topology coincides with the ultraweak topology. Since multiplication in a von Neumann algebra
is separately continuous in each variable for the ultraweak topology, condition (x) is satisfied in any von
Neumann algebra.

Let us now explain the proof of Theorem 1. Fix an isomorphism ¢ : A — EY. We can think of ¢ as
giving a bilinear pairing between A and E, which in turn determines a bounded operator ¢’ : E — AV. Let
¢ : AVY — EV denote the dual of ¢. The map ¢ is continuous with respect to the weak *-topologies on AV
and MV, respectively, and fits into a commutative diagram

Here p is the canonical map from A into its double dual. The map qAﬁ is uniquely determined by these
properties (since A is dense in AV with respect to the weak *-topology). We have seen that AYY admits the
structure of a von Neumann algebra, and that p can be considered as a C*-algebra homomorphism which
exhibits AYY as the von Neumann algebra envelope of A. Let r = ¢! o g% Then r is a left inverse to the
canonical inclusion p: A — AVVY.

Fix an element a € A. Let [, : A — A denote the operation given by left multiplication by A, and let

L) : AYY — AVY be defined similarly. Consider the diagram

p(a)

AVVT;>A

\Llp(a) lla

AV L5 A,

Since p is an algebra homomorphism, this diagram commutes on the subset p(4) C AVV. Using assumption
(%), we see that all of the maps in this diagram are continuous if we regard AV and A ~ EV as equipped



with the weak *-topologies. Since the image of p is weak *-dense in AYY, we conclude that the diagram
commutes.

Let K C AV denote the kernel of r. Since r is continuous with respect to the weak *-topologies, K is
closed with respect to the weak *-topology on AVY (which coincides with the ultraweak topology). If z € K,
we have

r(p(a)z) = ar(x) =0

so that p(a)r = K. The set {y € AV : yx € K} is ultraweakly closed (since multiplication by z is
ultraweakly continuous) and contains the image of p. Since p(A) is ultraweakly dense in AV, we deduce
that {y € AYY : yz € K} contains all of AVY. It follows that K is a left ideal in AVV.

The same argument shows that K is a right ideal in AVV. Since K is ultraweakly closed, the results of
the last lecture show that K is a *-ideal, and that the von Neumann algebra AYY decomposes as a product

AV ~ AV /K x K.

Set B = AYV/K. The composite map
A— A - B

is a C*-algebra homomorphism and an isomorphism on the level of vector spaces, hence an isomorphism of
C*-algebras. This completes the proof of Theorem 1 (under the additional assumption (x)).

In fact, we can say a bit more. Let us regard E as a subspace of its double dual EVY ~ AV, so that every
vector e determines a functional p. : A — C. Every such functional extends to a weak *-continuous map
fie : AVY — C, given by the composition

AW % BV 4 c,
This composite map is ultraweakly continuous (since the weak *-topology on AVY coincides with the ultra-
weak topology) and annihilates K (since K = ker(r) = ker(¢)). It follows that ji. descends to an ultraweakly
continuous functional B — C. In other words, the functional . is ultraweakly continuous if we regard A as
a von Neumann algebra using the isomorphism A ~ B.
Let F C AY be the collection of ultraweakly continuous functionals with respect to our von Neumann
algebra structure on A, so that we can regard E as a closed subspace of F. Consider the composite map

A— A 5 FY 5 EY.

Since A is a von Neumann algebra, the composition of the first two maps is an isomorphism. Since the
composition of all three maps is an isomorphism by assumption, we conclude that the map F¥ — EV is an
isomorphism. This implies that E = F: that is, E can be identified with the subspace of AV consisting of all
ultraweakly continuous functionals on A. In particular, the weak *-topology on A agrees with the ultraweak
topology given by the von Neumann algebra structure on A.

It is natural to ask to what extent the Banach space E appearing in Theorem 1 is unique. Suppose we
are given two Banach spaces E and E’, together with isomorphisms

EY ~A~E".

Can we then identify E with E’? In this situation, we can think of £ and E’ as subspaces of the dual
space AV; we then ask: do these subspaces necessarily coincide? Our analysis shows that E determines an
isomorphism of A with a von Neumann algebra B, and that as a subspace of AY we can identify E with
those linear functionals which are ultraweakly continuous on B. Similarly, E’ determines an isomorphism
A ~ B’. Asking if £ = FE’ (as subspaces of AY) is equivalent to asking if the C*-algebra isomorphism
B ~ A ~ B’ carries ultraweakly continuous functionals on B to ultraweakly continuous functionals on B’.
We can therefore phrase the question as follows:

Question 3. Let B and B’ be von Neumann algebras, and let f : B — B’ be a x-algebra isomorphism. Is f
necessarily an isomorphism of von Neumann algebras? That is, is f automatically continuous with respect
to the ultraweak topologies?



We will answer this question in the affirmative. Equivalently, we will show that the isomorphism f carries
ultraweakly continuous functionals x4 on B’ to ultraweakly continuous functionals on B. We first note that
it suffices to treat the case of positive functionals:

Lemma 4. Let B C B(V) be a von Neumann algebra. Then the vector space of ultraweakly continuous
functionals on B is generated by ultraweakly continuous states.

Proof. Every ultraweakly continuous functional p : B — C is given by

plx) = (w(vi),wy)

for some sequences of vectors v;, w; € V with 3 [|v;]|? < 00, Y ||wi]|> < co. Replacing V by V> we may
assume that u is given by p(z) = (z(v), w). Then

w(x) = 1(x(v +w),v+w) + i(m(v +iw),v + w) + —i(m(v —w),v—w) — E(ac(v —iw),v — iw)

4 4
is a linear combination of ultraweakly continuous positive functionals, each of which is a multiple of an
ultraweakly continuous state. O

Definition 5. Let B be a von Neumann algebra. We say that an element e € B is a projection if e is
Hermitian and e? = e. Given a pair of projections e and e/, we will write e < €’ if ee’ = e’e = e. We say
that e and e’ are orthogonal if e’ = ¢’e = 0. In this case, e + ¢’ is also a projection, satisfying

e<e+e >¢.

If B is given as the set of bounded operators on some Hilbert space V, then an element e € B is a
projection if and only if it is given by orthogonal projection onto some closed subspace W C V. Let us
denote such a projection by ey,. Note that ey < ew if and only if W C W', and that ey and ey are
orthogonal if and only if W and W' are orthogonal.

Suppose we are given a collection of mutually orthogonal projections {ew, }oer in B. Let W be the closed
subspace of V' generated by the subspaces W,. Then the collection of all finite sums . 1, €W, converges
to the projection ey in the ultraweak topology (in fact, it even converges in the ultrastrong topology). It
follows that ey € B. We can characterize ey as the smallest projection satisfying ey > ew, for every index
a.

We say that a state u : B — C is completely additive if, for every collection of mutually orthogonal

projections {e,} in B, we have
N(Z €a) = Z p(€q).
[e% «

It is clear from the definition that every ultraweakly continuous state on a von Neumann algebra B is
completely additive. In the next lecture, we will prove the converse:

Proposition 6. Let B be a von Neumann algebra and let pn : B — C be a completely additive state. Then
w 1s ultraweakly continuous.

It is clear that any C*-algebra isomorphism B ~ B’ carries completely additive states to completely
additive states. Using Proposition 6, we deduce that such an isomorphism is ultraweakly continuous. In
fact, we get the following more general result:

Corollary 7. Let f : B — B’ be a C*-algebra homomorphism between von Neumann algebras. Then f is
a von Neumann algebra homomorphism (that is, f is ultraweakly continuous) if and only if it satisfies the
following condition:

(%) For every collection of mutually orthogonal projections {e,} in B having sum e, we have f(e) =
>0 flea).

In particular, if f is an isomorphism of C*-algebras, then f is ultraweakly continuous.



