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The following result provides an intrinsic characterization of von Neumann algebras:

Theorem 1. Let A be a C∗-algebra. Suppose there exists a Banach space E and a Banach space isomorphism
A ' E∨. Then there exists a von Neumann algebra B and an isomorphism of C∗-algebras A→ B (in other
words, A admits the structure of a von Neumann algebra).

We will prove Theorem 1 under the following additional assumption:

(∗) For each a ∈ A, the operations la, ra : A → A given by left multiplication on A are continuous with
respect to the weak ∗-topology (arising from the identification A ' E∨).

Remark 2. We have seen that every von Neumann algebra admits a Banach space predual, such that the
weak ∗-topology coincides with the ultraweak topology. Since multiplication in a von Neumann algebra
is separately continuous in each variable for the ultraweak topology, condition (∗) is satisfied in any von
Neumann algebra.

Let us now explain the proof of Theorem 1. Fix an isomorphism φ : A → E∨. We can think of φ as
giving a bilinear pairing between A and E, which in turn determines a bounded operator φ′ : E → A∨. Let
φ̂ : A∨∨ → E∨ denote the dual of φ′. The map φ̂ is continuous with respect to the weak ∗-topologies on A∨∨

and M∨, respectively, and fits into a commutative diagram

A
φ //

ρ

""

M∨

A∨∨.

φ̂

;;

Here ρ is the canonical map from A into its double dual. The map φ̂ is uniquely determined by these
properties (since A is dense in A∨∨ with respect to the weak ∗-topology). We have seen that A∨∨ admits the
structure of a von Neumann algebra, and that ρ can be considered as a C∗-algebra homomorphism which
exhibits A∨∨ as the von Neumann algebra envelope of A. Let r = φ−1 ◦ φ̂. Then r is a left inverse to the
canonical inclusion ρ : A→ A∨∨.

Fix an element a ∈ A. Let la : A → A denote the operation given by left multiplication by A, and let
lρ(a) : A∨∨ → A∨∨ be defined similarly. Consider the diagram

A∨∨
r //

lρ(a)
��

A

la
��

A∨∨
r // A.

Since ρ is an algebra homomorphism, this diagram commutes on the subset ρ(A) ⊆ A∨∨. Using assumption
(∗), we see that all of the maps in this diagram are continuous if we regard A∨∨ and A ' E∨ as equipped
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with the weak ∗-topologies. Since the image of ρ is weak ∗-dense in A∨∨, we conclude that the diagram
commutes.

Let K ⊆ A∨∨ denote the kernel of r. Since r is continuous with respect to the weak ∗-topologies, K is
closed with respect to the weak ∗-topology on A∨∨ (which coincides with the ultraweak topology). If x ∈ K,
we have

r(ρ(a)x) = ar(x) = 0

so that ρ(a)x = K. The set {y ∈ A∨∨ : yx ∈ K} is ultraweakly closed (since multiplication by x is
ultraweakly continuous) and contains the image of ρ. Since ρ(A) is ultraweakly dense in A∨∨, we deduce
that {y ∈ A∨∨ : yx ∈ K} contains all of A∨∨. It follows that K is a left ideal in A∨∨.

The same argument shows that K is a right ideal in A∨∨. Since K is ultraweakly closed, the results of
the last lecture show that K is a ∗-ideal, and that the von Neumann algebra A∨∨ decomposes as a product

A∨∨ ' A∨∨/K ×K.

Set B = A∨∨/K. The composite map
A→ A∨∨ → B

is a C∗-algebra homomorphism and an isomorphism on the level of vector spaces, hence an isomorphism of
C∗-algebras. This completes the proof of Theorem 1 (under the additional assumption (∗)).

In fact, we can say a bit more. Let us regard E as a subspace of its double dual E∨∨ ' A∨, so that every
vector e determines a functional µe : A → C. Every such functional extends to a weak ∗-continuous map
µ̂e : A∨∨ → C, given by the composition

A∨∨
φ̂→ E∨

e→ C.

This composite map is ultraweakly continuous (since the weak ∗-topology on A∨∨ coincides with the ultra-

weak topology) and annihilates K (since K = ker(r) = ker(φ̂)). It follows that µ̂e descends to an ultraweakly
continuous functional B → C. In other words, the functional µe is ultraweakly continuous if we regard A as
a von Neumann algebra using the isomorphism A ' B.

Let F ⊆ A∨ be the collection of ultraweakly continuous functionals with respect to our von Neumann
algebra structure on A, so that we can regard E as a closed subspace of F . Consider the composite map

A→ A∨∨ → F∨ → E∨.

Since A is a von Neumann algebra, the composition of the first two maps is an isomorphism. Since the
composition of all three maps is an isomorphism by assumption, we conclude that the map F∨ → E∨ is an
isomorphism. This implies that E = F : that is, E can be identified with the subspace of A∨ consisting of all
ultraweakly continuous functionals on A. In particular, the weak ∗-topology on A agrees with the ultraweak
topology given by the von Neumann algebra structure on A.

It is natural to ask to what extent the Banach space E appearing in Theorem 1 is unique. Suppose we
are given two Banach spaces E and E′, together with isomorphisms

E∨ ' A ' E′∨.

Can we then identify E with E′? In this situation, we can think of E and E′ as subspaces of the dual
space A∨; we then ask: do these subspaces necessarily coincide? Our analysis shows that E determines an
isomorphism of A with a von Neumann algebra B, and that as a subspace of A∨ we can identify E with
those linear functionals which are ultraweakly continuous on B. Similarly, E′ determines an isomorphism
A ' B′. Asking if E = E′ (as subspaces of A∨) is equivalent to asking if the C∗-algebra isomorphism
B ' A ' B′ carries ultraweakly continuous functionals on B to ultraweakly continuous functionals on B′.
We can therefore phrase the question as follows:

Question 3. Let B and B′ be von Neumann algebras, and let f : B → B′ be a ∗-algebra isomorphism. Is f
necessarily an isomorphism of von Neumann algebras? That is, is f automatically continuous with respect
to the ultraweak topologies?
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We will answer this question in the affirmative. Equivalently, we will show that the isomorphism f carries
ultraweakly continuous functionals µ on B′ to ultraweakly continuous functionals on B. We first note that
it suffices to treat the case of positive functionals:

Lemma 4. Let B ⊆ B(V ) be a von Neumann algebra. Then the vector space of ultraweakly continuous
functionals on B is generated by ultraweakly continuous states.

Proof. Every ultraweakly continuous functional µ : B → C is given by

µ(x) =
∑

(x(vi), wi)

for some sequences of vectors vi, wi ∈ V with
∑
||vi||2 <∞,

∑
||wi||2 <∞. Replacing V by V ⊕∞, we may

assume that µ is given by µ(x) = (x(v), w). Then

µ(x) =
1

4
(x(v + w), v + w) +

i

4
(x(v + iw), v + iw) +−1

4
(x(v − w), v − w)− i

4
(x(v − iw), v − iw)

is a linear combination of ultraweakly continuous positive functionals, each of which is a multiple of an
ultraweakly continuous state.

Definition 5. Let B be a von Neumann algebra. We say that an element e ∈ B is a projection if e is
Hermitian and e2 = e. Given a pair of projections e and e′, we will write e ≤ e′ if ee′ = e′e = e. We say
that e and e′ are orthogonal if ee′ = e′e = 0. In this case, e+ e′ is also a projection, satisfying

e ≤ e+ e′ ≥ e′.

If B is given as the set of bounded operators on some Hilbert space V , then an element e ∈ B is a
projection if and only if it is given by orthogonal projection onto some closed subspace W ⊆ V . Let us
denote such a projection by eW . Note that eW ≤ eW ′ if and only if W ⊆ W ′, and that eW and eW ′ are
orthogonal if and only if W and W ′ are orthogonal.

Suppose we are given a collection of mutually orthogonal projections {eWα
}α∈I in B. Let W be the closed

subspace of V generated by the subspaces Wα. Then the collection of all finite sums
∑
α∈I0 eWα converges

to the projection eW in the ultraweak topology (in fact, it even converges in the ultrastrong topology). It
follows that eW ∈ B. We can characterize eW as the smallest projection satisfying eW ≥ eWα

for every index
α.

We say that a state µ : B → C is completely additive if, for every collection of mutually orthogonal
projections {eα} in B, we have

µ(
∑
α

eα) =
∑
α

µ(eα).

It is clear from the definition that every ultraweakly continuous state on a von Neumann algebra B is
completely additive. In the next lecture, we will prove the converse:

Proposition 6. Let B be a von Neumann algebra and let µ : B → C be a completely additive state. Then
µ is ultraweakly continuous.

It is clear that any C∗-algebra isomorphism B ' B′ carries completely additive states to completely
additive states. Using Proposition 6, we deduce that such an isomorphism is ultraweakly continuous. In
fact, we get the following more general result:

Corollary 7. Let f : B → B′ be a C∗-algebra homomorphism between von Neumann algebras. Then f is
a von Neumann algebra homomorphism (that is, f is ultraweakly continuous) if and only if it satisfies the
following condition:

(∗) For every collection of mutually orthogonal projections {eα} in B having sum e, we have f(e) =∑
α f(eα).

In particular, if f is an isomorphism of C∗-algebras, then f is ultraweakly continuous.
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