Lecture 8: The Field B_{dR}

October 29, 2018

Throughout this lecture, we fix a perfectoid field C^{b} of characteristic p, with valuation ring \mathcal{O}_{C}^{b}. Fix an element $\pi \in C^{b}$ with $0<|\pi|_{C^{b}}<1$, and let B denote the completion of $\mathbf{A}_{\text {inf }}\left[\frac{1}{p}, \frac{1}{[\pi]}\right]$ with respect to the family of Gauss norms $|\bullet|_{\rho}$ for $0<\rho<1$. Recall our heuristic picture: B is an analogue of the ring of holomorphic functions on the punctured unit disk $D^{\times}=\{z \in \mathbf{C}: 0<|z|<1\}$. In the previous lecture, we studied some elements of the eigenspace $B^{\varphi=p}$ which can be described in two equivalent ways:

- As convergent Teichmüller expansions $\sum \frac{\left[a^{p^{p}}\right]}{p^{n}}$, where $|a|_{C^{b}}<1$.
- As logarithms $\log ([x])$, where $|x-1|_{C^{b}}<1$.

We now study the "vanishing loci" of these objects, viewed as functions on the "space" Y of (characteristic zero) untilts $y=(K, \iota)$ of C^{b}."

Construction 1. Let $\mathbf{Q}_{p}^{\text {cyc }}$ denote the perfectoid field introduced in Lecture 2 (given by the completion of the union of cyclotomic extensions $\bigcup_{n>0} \mathbf{Q}_{p}\left[\zeta_{p^{n}}\right]$. We let ϵ denote the sequence of element of $\mathbf{Q}_{p}^{\text {cyc }}$ given by $\left(1, \zeta_{p}, \zeta_{p^{2}}, \zeta_{p^{3}}, \cdots\right)$, which we regard as an element of the tilt $\left(\mathbf{Q}_{p}^{\text {cyc }}\right)^{b}$. By construction, we have $\epsilon^{\sharp}=1$, so that $(\epsilon-1)^{\sharp} \in p \mathbf{Z}_{p}^{\text {cyc }}$. It follows that $\epsilon-1$ is a pseudo-uniformizer of the tilt $\left(\mathbf{Q}_{p}^{\text {cyc }}\right)^{b}$: that is, we have

$$
0<|\epsilon-1|_{\left(\mathbf{Q}_{P}^{\text {cyc }}\right)^{\text {en }}}<1
$$

Let (K, ι) be an untilt of C^{b} equipped with a (continuous) homomorphism $u: \mathbf{Q}_{p}^{\text {cyc }} \hookrightarrow K$. Then the induced map $\left(\mathbf{Q}_{p}^{\text {cyc }}\right)^{b} \rightarrow K^{b} \simeq C^{b}$ carries ϵ to pseudo-uniformizer of the field C^{b}, which we will denote by $f(\epsilon)$.

Proposition 2. The construction $(K, \iota, u) \mapsto u(\epsilon)$ induces a bijection

$$
\left\{\text { Untilts }(K, \iota) \text { of } C^{b} \text { with an embedding } \mathbf{Q}_{p}^{\text {cyc }} \hookrightarrow K\right\} \simeq\left\{x \in C^{b}: 0<|x-1|_{C^{b}}<1\right\} .
$$

Proof. Fix an element $x \in C^{b}$ satisfying $0<|x-1|_{C^{b}}<1$. We wish to show that there is an essentially unique untilt K equipped with an embedding $u: \mathbf{Q}_{p}^{\text {cyc }} \hookrightarrow K$ satisfying $\left(x^{1 / p^{n}}\right)^{\sharp}=f\left(\zeta_{p^{n}}\right)$ for $n \geq 0$. Note that giving the embedding u is equivalent to choosing a compatible sequence of p^{n} th roots of unity in K, so we are just looking for an untilt K of C^{b} having the property that $\left(x^{1 / p}\right)^{\sharp}$ is a primitive p th root of unity in K. This is equivalent to the requirement that $\left(x^{1 / p}\right)^{\sharp}$ satisfies the p th cyclotomic polynomial

$$
1+t+\cdots+t^{p-1}=0 ;
$$

that is, that the associated map $\theta: \mathbf{A}_{\text {inf }} \rightarrow \mathcal{O}_{K}$ annihilates the element $\xi=1+\left[x^{1 / p}\right]+\cdots+\left[x^{(p-1) / p}\right] \in \mathbf{A}_{\text {inf }}$. Consequently, to prove the existence and uniqueness of K, it will suffice to show that ξ is a distinguished element of $\mathbf{A}_{\text {inf }}$ (see Lecture 3). Writing $\xi=\sum_{n \geq 0}\left[c_{n}\right] p^{n}$, we wish to show that $\left|c_{0}\right|_{C^{b}}<1$ and $\left|c_{1}\right|_{C^{b}}=1$. Note that, since $x \equiv 1\left(\bmod \mathfrak{m}_{C}^{b}\right)$ the image of ξ in the ring of Witt vectors $W(k)=W\left(\cup_{C}^{b} / \mathfrak{m}_{C}^{b}\right)$ is p. We therefore have $\left|c_{0}\right|_{C^{b}}<1$ and $\left|c_{1}-1\right|_{C^{b}}<1$ (which is even more than we need).

Note that, if K is an untilt of C^{b} for which there exists one embedding $u: \mathbf{Q}_{p}^{\text {cyc }} \hookrightarrow K$, then we can always find many others: namely, we can precompose f with the automorphism of $\mathbf{Q}_{p}^{\text {cyc }}$ given by $\zeta_{p^{n}} \mapsto \zeta_{p^{n}}^{\alpha}$ for any $\alpha \in \mathbf{Z}_{p}^{\times}$. Under the correspondence of Proposition 2, this corresponds to the action of \mathbf{Z}_{p}^{\times}on $\left\{x \in C^{b}: 0<|x-1|_{C^{b}}<1\right\}$ by exponentiation. We therefore obtain the following:

Corollary 3. There is a canonical bijection
$\left\{\right.$ Untilts K containing p^{n} th roots of unity for all $\left.n\right\} /$ isomorphism

$$
\begin{gathered}
\downarrow \sim \\
\left\{x \in C^{b}: 0<|x-1|_{C^{b}}<1\right\} / \mathbf{Z}_{p}^{\times} .
\end{gathered}
$$

Moreover, replacing an untilt (K, ι) by $\left(K, \iota \circ \varphi_{C}\right)$ has the effect of replacing the corresponding element $x \in C^{b}$ by $x^{1 / p}$. We therefore have:

Corollary 4. There is a canonical bijection

The inverse bijection carries the equivalence class of an element $x \in C^{b}$ to the "vanishing locus" of $\log ([x]) \in$ B

The proof is based on the following:
Exercise 5. Let K be a field of characteristic zero which is complete with respect to non-archimedean absolute value having residue characteristic p, so that the $\operatorname{logarithm} \log (y) \in K$ is defined for $y \in K$ satisfying $|y-1|_{K}<1$. Show that the construction $y \mapsto \log (y)$ induces a bijection

$$
\left\{y \in K:|y-1|_{K}<|p|_{K}^{1 /(p-1)}\right\} \rightarrow\left\{z \in K:|z|<|p|_{K}^{1 /(p-1)}\right.
$$

(hint: the inverse is given by the exponential map $z \mapsto \exp (z)=\sum \frac{z^{n}}{n!}$).
Remark 6. The constant $|p|_{K}^{1 /(p-1)}$ appearing in Exercise 5 is the best possible. Note that if K contains a primitive p th root of unity ζ_{p}, then ζ_{p} satisfies $\left|\zeta_{p}-1\right|_{K}=|p|_{K}^{1 /(p-1)}<1$, and we have

$$
p \log \left(\zeta_{p}\right)=\log \left(\zeta_{p}^{p}\right)=\log (1)=0
$$

so that $\log \left(\zeta_{p}\right)=0=\log (1)$. It follows that the logarithm map is not injective when restricted to the closed disk $\left\{y \in K:|y-1|_{K} \leq|p|_{K}^{1 /(p-1)}\right\}$.

Proof of Corollary 4. Let x be an element of C^{b} satisfying $0<|x-1|_{C^{b}}<1$. Then, for any untilt (K, ι) of C^{b}, the element x^{\sharp} satisfies $\left|\left(x^{p^{n}}\right)^{\sharp}-1\right|_{K}<|p|_{K}^{1 /(p-1)}$ for $n \gg 0$. Consequently, if $\log \left(x^{\sharp}\right)=0$, then $\log \left(\left(x^{p^{n}}\right)^{\sharp}\right)=0$ and therefore $\left(x^{p^{n}}\right)^{\sharp}=1$ by virtue of Exercise ??. Choose n as small as possible, so that $\left(x^{p^{n-1}}\right)^{\sharp} \neq 1$ (this is possible since we have assumed that $x \neq 1$). Composing ι with a suitable power of the Frobenius map $\varphi_{C^{b}}$, we can assume that $n=0$: that is, we have $x^{\sharp}=1$ but $\left(x^{1 / p}\right)^{\sharp} \neq 1$, so that (K, ι) is the untilt associated to the element x in the proof of Proposition 2.

Remark 7. One can show that when C^{b} is algebraically closed, then every untilt of C^{b} is also algebraically closed. It follows in this case that every Frobenius orbit of characteristic zero untilts of C^{b} can be realized as the vanishing locus of some element of $B^{\varphi=p}$ having the form $\log ([x])$; moreover, this element of $B^{\varphi=p}$ is unique up to the action of \mathbf{Q}_{p}.

Our next goal is to show that the functions of the form $\log ([x])$ have simple zeros: that is, they do not vanish with multiplicity at any point of K. To make this idea precise, we need some auxiliary constructions.

Construction 8. Let $y=(K, \iota)$ be a characteristic zero untilt of C^{b}, so that we have a canonical surjection $\theta: \mathbf{A}_{\mathrm{inf}} \rightarrow \mathcal{O}_{K}$ whose kernel is a principal ideal (ξ). We saw in Lecture 3 that the ring $\mathbf{A}_{\mathrm{inf}}$ is ξ-adically complete: that is, it is isomorphic to the inverse limit of the tower

$$
\cdots \rightarrow \mathbf{A}_{\mathrm{inf}} /\left(\xi^{4}\right) \rightarrow \mathbf{A}_{\mathrm{inf}} /\left(\xi^{3}\right) \rightarrow \mathbf{A}_{\mathrm{inf}} /\left(\xi^{2}\right) \rightarrow \mathbf{A}_{\mathrm{inf}} /(\xi) \simeq \mathcal{O}_{K}
$$

We let $B_{\mathrm{dR}}^{+}=B_{\mathrm{dR}}^{+}(y)$ denote the inverse limit of the diagram

$$
\cdots \rightarrow\left(\mathbf{A}_{\mathrm{inf}} /\left(\xi^{4}\right)\right)\left[\frac{1}{p}\right] \rightarrow\left(\mathbf{A}_{\mathrm{inf}} /\left(\xi^{3}\right)\right)\left[\frac{1}{p}\right] \rightarrow \mathbf{A}_{\mathrm{inf}} /\left(\xi^{2}\right)\left[\frac{1}{p}\right] \rightarrow\left(\mathbf{A}_{\mathrm{inf}} /(\xi)\right)\left[\frac{1}{p}\right] \simeq \mathcal{O}_{K}\left[\frac{1}{p}\right]=K
$$

Remark 9. The ring B_{dR}^{+}does not depend on the choice of generator ξ for the ideal $\operatorname{ker}(\theta)$: in each of the expressions above, we can replace the ideal $\left(\xi^{n}\right)$ by $\operatorname{ker}(\theta)^{n}$. However, it does depend on the choice of untilt $y=(K, \iota)$.

Remark 10. In the situation of Construction 8, we can replace each of the localizations $\left(\mathbf{A}_{\text {inf }} /\left(\xi^{n}\right)\right)\left[\frac{1}{p}\right]$ by $\left(\mathbf{A}_{\text {inf }} /\left(\xi^{n}\right)\right)\left[\frac{1}{[\pi]}\right]$. Having made this replacement, the construction is sensible even when $K \simeq C^{b}$ has characteristic p. In this case, each quotient $\mathbf{A}_{\text {inf }}\left(\xi^{n}\right)\left[\frac{1}{[\pi]}\right]$ can be identified with $W_{n}\left(\mathcal{O}_{C}^{b}\right)\left[\frac{1}{[\pi]}\right] \simeq W_{n}\left(\mathcal{O}_{C}^{b}\left[\frac{1}{\pi}\right]\right) \simeq$ $W_{n}\left(C^{b}\right)$. Consequently, the "characteristic p " analogue of the ring B_{dR}^{+}is just the ring of Witt vectors $W\left(C^{b}\right)$.

Proposition 11. In the situation of Construction 8, B_{dR}^{+}is a complete discrete valuation ring, and the element ξ is a uniformizer. In other words:
(a) The image of ξ in B_{dR}^{+}is not a zero-divisor.
(b) The ring B_{dR}^{+}is ξ-adically complete.
(c) The quotient $B_{\mathrm{dR}}^{+} /(\xi)$ is a field.

Proof. We first prove (a). Let f be an element of B_{dR}^{+}, given by a system of elements $x_{n} \in\left(\mathbf{A}_{\mathrm{inf}} /\left(\xi^{n}\right)\right)\left[\frac{1}{p}\right]$. We saw in Lecture 3 that ξ is not a zero divisor in $\mathbf{A}_{\mathrm{inf}}$ and p is not a zero-divisor in $\mathbf{A}_{\mathrm{inf}} /(\xi)$, and is therefore not a zero-divisor in $\mathbf{A}_{\text {inf }} /\left(\xi^{n}\right)$ for all n. Consequently, we can view the quotient $\mathbf{A}_{\text {inf }} /\left(\xi^{n}\right)$ as a subring of the localization $\left(\mathbf{A}_{\mathrm{inf}} /\left(\xi^{n}\right)\right)\left[\frac{1}{p}\right]$. We can therefore choose some $k \gg 0$ (depending on n) such that $p^{k} x_{n}$ belongs to $\mathbf{A}_{\mathrm{inf}} /\left(\xi^{n}\right)$. If $\xi x=0$, then each $p^{k} x_{n}$ is annihilated by ξ in $\mathbf{A}_{\mathrm{inf}} /\left(\xi^{n}\right)$, so we can write $p^{k} x_{n}=\xi^{n-1} y_{n}$ for some $y_{n} \in \mathbf{A}_{\text {inf }} /\left(\xi^{n}\right)$. Reducing modulo $\left(\xi^{n-1}\right)$, we conclude that $p^{k} x_{n-1}=0$ in $\mathbf{A}_{\text {inf }} /\left(\xi^{n-1}\right)$, so that $x_{n-1}=0$. Since n is arbitrary, it follows that $x=0$.

Note that each of the projection maps $B_{\mathrm{dR}}^{+} \rightarrow\left(\mathbf{A}_{\mathrm{inf}} /\left(\xi^{m}\right)\right)\left[\frac{1}{p}\right]$ annihilates $\left(\xi^{m}\right)$ and therefore factors as a surjection $\rho: B_{\mathrm{dR}}^{+} /\left(\xi^{m}\right) \rightarrow\left(\mathbf{A}_{\mathrm{inf}} /\left(\xi^{m}\right)\right)\left[\frac{1}{p}\right]$. We claim that ρ is an isomorphism: that is, if x is an element of B_{dR}^{+}whose image in $\left(\mathbf{A}_{\mathrm{inf}} /\left(\xi^{m}\right)\right)\left[\frac{1}{p}\right]$ vanishes, then x is divisible by ξ^{m}. Write $x=\left\{x_{n}\right\}_{n \geq 0}$ as above. For each $n \geq m$, we can choose $k(n) \gg 0$ such that $p^{k(n)} x_{n} \in \mathbf{A}_{\text {inf }} /\left(\xi^{n}\right)$. Then the image of $p^{k(n)} x_{n}$ in $\mathbf{A}_{\text {inf }} /\left(\xi^{m}\right)$ vanishes, so we can write $p^{k(n)} x_{n}=\xi^{m} y_{n}$ for some $y_{n} \in \mathbf{A}_{\mathrm{inf}} /\left(\xi^{n-m}\right)$. Then x is the product of ξ^{m} with the element of B_{dR}^{+}given by the sequence $\left\{\frac{y_{n}}{p^{k(n)}}\right\}_{n \geq m}$.

It follows from the preceding argument that B_{dR}^{+}can be identified with the limit $\lim _{\leftrightarrows} B_{\mathrm{dR}}^{+} /\left(\xi^{m}\right)$ and is therefore ξ-adically complete. Moreover, in the case $m=1$ we obtain an isomorphism $\overleftarrow{B_{\mathrm{dR}}^{+}} /(\xi) \simeq K$ which proves (c).

Remark 12. Since B_{dR}^{+}is a complete discrete valuation ring whose residue field $B_{\mathrm{dR}}^{+} /(\xi) \simeq K$ has characteristic zero, it is abstractly isomorphic to the formal power series ring $K[[\xi]]$. Beware that there is no canonical isomorphism of B_{dR}^{+}with $K[[\xi]]$.
Definition 13. We let B_{dR} denote the fraction field of the discrete valuation ring B_{dR}^{+}(that is, the ring $\left.B_{\mathrm{dR}}^{+}\left[\frac{1}{\xi}\right]\right)$.

Heuristically, if we think of the collection Y of all characteristic zero untilts $y=(K, \iota)$ of C^{b} as as an analogue of the punctured unit disk D^{\times}then $B_{\mathrm{dR}}^{+}(y)$ is the analogue is the analogue of the completed local ring $\widehat{\mathcal{O}}_{D^{\times}, y}$ at a point $y \in D^{\times}$(which is isomorphic to the power series ring $\mathbf{C}[[t]]$, where t is any local coordinate of D^{\times}at the point y (for example, we can take $t=z-y$).

Note that, for every characteristic zero untilt $y=(K, \iota)$ of C^{b}, we have a canonical map $\mathbf{A}_{\text {inf }} \rightarrow B_{\mathrm{dR}}^{+}$. Moreover, the composite map $\mathbf{A}_{\mathrm{inf}} \rightarrow B_{\mathrm{dR}}^{+} \rightarrow B_{\mathrm{dR}}^{+} /(\xi) \simeq K$ carries p and $[\pi]$ to invertible elements $p, \pi^{\sharp} \in K$. Consequently, the images of p and $[\pi]$ in B_{dR}^{+}are invertible: that is, we have a map $\mathbf{A}_{\text {inf }}\left[\frac{1}{p}, \frac{1}{[\pi]}\right] \rightarrow B_{\mathrm{dR}}^{+}$, which we will denote by $f \mapsto \widehat{f}_{y}$.
Proposition 14. Let $0<a \leq b<1$ be real numbers satisfying $a \leq|p|_{K} \leq b$. Then the map $f \mapsto \widehat{f}_{y}$ admits a canonical extension to a ring homomorphism $B_{[a, b]} \rightarrow B_{\mathrm{dR}}^{+}$, which we will also denote by $f \mapsto \widehat{f}_{y}$.

Note that Proposition 14 is consistent with our heuristics: if we think of $B_{[a, b]}$ as the ring of "holomorphic" functions on the untilts K satisfying $a \leq|p|_{K} \leq b$, then we should be able to evaluate elements of $B_{[a, b]}$ not only at the point K (to obtain an element of K itself), but also "infinitesimally close" to K (to obtain an element of B_{dR}^{+}).

Proof. Without loss of generality, we may assume that $a=|p|_{K}=b$. Moreover, we can assume that the pseudo-uniformizer $\pi \in C^{b}$ is chosen so that $|\pi|_{C^{b}}=|p|_{K}$. In this case, the ring $B_{[a, b]}$ is obtained from the subring $\mathbf{A}_{\inf }\left[\frac{[\pi]}{p}, \frac{p}{[\pi]}\right]$ by first p-adically completing and then inverting the prime number p. For each $n \geq 0$, \bar{e} determines a ring homomorphism

$$
\bar{e}_{n}: \mathbf{A}_{\mathrm{inf}}\left[\frac{[\pi]}{p}, \frac{p}{[\pi]}\right] \rightarrow B_{\mathrm{dR}}^{+} /\left(\xi^{n}\right) \simeq\left(\mathbf{A}_{\mathrm{inf}} /\left(\xi^{n}\right)\right)\left[\frac{1}{p}\right]
$$

We claim that there exists an integer $k \gg 0$ (depending on n) such that the image of \bar{e}_{n} is contained in

$$
p^{-k}\left(\mathbf{A}_{\mathrm{inf}} /\left(\xi^{n}\right)\right) \subseteq\left(\mathbf{A}_{\mathrm{inf}} /\left(\xi^{n}\right)\right)\left[\frac{1}{p}\right]
$$

Assuming this is true, we can use the fact that $p^{-k}\left(\mathbf{A}_{\mathrm{inf}} /\left(\xi^{n}\right)\right)$ is p-adically complete to extend \bar{e}_{n} to a map (of abelian groups) from the p-adic completion of $\mathbf{A}_{\mathrm{inf}}\left[\frac{[\pi]}{p}, \frac{p}{[\pi]}\right]$ to $p^{-k}\left(\mathbf{A}_{\mathrm{inf}} /\left(\xi^{n}\right)\right)$. Inverting p, we then obtain a map (of commutative rings)

$$
e_{n}: B_{[a, b]} \rightarrow B_{\mathrm{dR}}^{+} /\left(\xi^{n}\right) \simeq\left(\mathbf{A}_{\mathrm{inf}} /\left(\xi^{n}\right)\right)\left[\frac{1}{p}\right] .
$$

These maps are compatible as n varies, and determine the desired homomorphism $B_{[a, b]} \rightarrow B_{\mathrm{dR}}^{+}$.
It remains to prove the existence of k. Define $f, g \in B_{\mathrm{dR}}^{+} /\left(\xi^{n}\right)$ by the formulae

$$
f=\bar{e}_{n}\left(\frac{[\pi]}{p}\right) \quad g=f^{-1}=\bar{e}_{n}\left(\frac{p}{[\pi]}\right)
$$

Our assumption that $|\pi|_{C^{b}}=|p|_{K}$ guarantees that the images of f and g under the map $B_{\mathrm{dR}}^{+} /\left(\xi^{n}\right) \rightarrow$ $B_{\mathrm{dR}}^{+} /(\xi) \simeq K$ belong to the valuation ring \mathcal{O}_{K}. Consequently, we can find elements $f^{\prime}, g^{\prime} \in \mathbf{A}_{\mathrm{inf}} /\left(\xi^{n}\right)$ satisfying

$$
f \equiv f^{\prime} \quad \bmod \xi \quad g \equiv g^{\prime} \quad \bmod \xi
$$

We therefore have

$$
f=f^{\prime}+\frac{\xi}{p^{c}} f^{\prime \prime} \quad g=g^{\prime}+\frac{\xi}{p^{c}} g^{\prime \prime}
$$

for some other elements $f^{\prime \prime}, g^{\prime \prime} \in \mathbf{A}_{\mathrm{inf}} /\left(\xi^{n}\right)$ and some integer $c \gg 0$. In this case, every power of f admits a binomial expansion

$$
\begin{aligned}
f^{m} & =\left(f^{\prime}+\frac{\xi}{p^{c}} f^{\prime \prime}\right)^{m} \\
& =\sum_{i=0}^{m}\binom{m}{i} f^{\prime m-i}\left(\frac{\xi}{p^{c}} f^{\prime \prime}\right)^{i} \\
& =\sum_{i=0}^{n-1}\binom{m}{i} f^{\prime m-i}\left(\frac{\xi}{p^{c}} f^{\prime \prime}\right)^{i} \\
& \in p^{-n c}\left(\mathbf{A}_{\mathrm{inf}} /\left(\xi^{n}\right)\right),
\end{aligned}
$$

and similarly with g in place of f.

