Lecture 8: The Field B_{dR}

October 29, 2018

Throughout this lecture, we fix a perfectoid field C^{\flat} of characteristic p, with valuation ring \mathcal{O}_{C}^{\flat} . Fix an element $\pi \in C^{\flat}$ with $0 < |\pi|_{C^{\flat}} < 1$, and let B denote the completion of $\mathbf{A}_{\inf}[\frac{1}{p}, \frac{1}{[\pi]}]$ with respect to the family of Gauss norms $|\bullet|_{\rho}$ for $0 < \rho < 1$. Recall our heuristic picture: B is an analogue of the ring of holomorphic functions on the punctured unit disk $D^{\times} = \{z \in \mathbf{C} : 0 < |z| < 1\}$. In the previous lecture, we studied some elements of the eigenspace $B^{\varphi=p}$ which can be described in two equivalent ways:

- As convergent Teichmüller expansions $\sum \frac{[a^{p^n}]}{p^n}$, where $|a|_{C^{\flat}} < 1$.
- As logarithms $\log([x])$, where $|x 1|_{C^{\flat}} < 1$.

We now study the "vanishing loci" of these objects, viewed as functions on the "space" Y of (characteristic zero) untilts $y = (K, \iota)$ of C^{\flat} ."

Construction 1. Let $\mathbf{Q}_p^{\text{cyc}}$ denote the perfectoid field introduced in Lecture 2 (given by the completion of the union of cyclotomic extensions $\bigcup_{n>0} \mathbf{Q}_p[\zeta_{p^n}]$). We let ϵ denote the sequence of element of $\mathbf{Q}_p^{\text{cyc}}$ given by $(1, \zeta_p, \zeta_{p^2}, \zeta_{p^3}, \cdots)$, which we regard as an element of the tilt $(\mathbf{Q}_p^{\text{cyc}})^{\flat}$. By construction, we have $\epsilon^{\sharp} = 1$, so that $(\epsilon - 1)^{\sharp} \in p\mathbf{Z}_p^{\text{cyc}}$. It follows that $\epsilon - 1$ is a pseudo-uniformizer of the tilt $(\mathbf{Q}_p^{\text{cyc}})^{\flat}$: that is, we have

$$0 < |\epsilon - 1|_{(\mathbf{Q}_n^{\mathrm{cyc}})^\flat} < 1.$$

Let (K, ι) be an until of C^{\flat} equipped with a (continuous) homomorphism $u : \mathbf{Q}_p^{\text{cyc}} \hookrightarrow K$. Then the induced map $(\mathbf{Q}_p^{\text{cyc}})^{\flat} \to K^{\flat} \simeq C^{\flat}$ carries ϵ to pseudo-uniformizer of the field C^{\flat} , which we will denote by $f(\epsilon)$.

Proposition 2. The construction $(K, \iota, u) \mapsto u(\epsilon)$ induces a bijection

$$\{ Untilts (K, \iota) \text{ of } C^{\flat} \text{ with an embedding } \mathbf{Q}_p^{\text{cyc}} \hookrightarrow K \} \simeq \{ x \in C^{\flat} : 0 < |x - 1|_{C^{\flat}} < 1 \}.$$

Proof. Fix an element $x \in C^{\flat}$ satisfying $0 < |x - 1|_{C^{\flat}} < 1$. We wish to show that there is an essentially unique until K equipped with an embedding $u : \mathbf{Q}_p^{\text{cyc}} \hookrightarrow K$ satisfying $(x^{1/p^n})^{\sharp} = f(\zeta_{p^n})$ for $n \ge 0$. Note that giving the embedding u is equivalent to choosing a compatible sequence of p^n th roots of unity in K, so we are just looking for an until K of C^{\flat} having the property that $(x^{1/p})^{\sharp}$ is a primitive pth root of unity in K. This is equivalent to the requirement that $(x^{1/p})^{\sharp}$ satisfies the pth cyclotomic polynomial

$$1 + t + \dots + t^{p-1} = 0;$$

that is, that the associated map $\theta : \mathbf{A}_{inf} \to \mathcal{O}_K$ annihilates the element $\xi = 1 + [x^{1/p}] + \dots + [x^{(p-1)/p}] \in \mathbf{A}_{inf}$. Consequently, to prove the existence and uniqueness of K, it will suffice to show that ξ is a distinguished element of \mathbf{A}_{inf} (see Lecture 3). Writing $\xi = \sum_{n\geq 0} [c_n]p^n$, we wish to show that $|c_0|_{C^\flat} < 1$ and $|c_1|_{C^\flat} = 1$. Note that, since $x \equiv 1 \pmod{\mathfrak{m}_C^\flat}$ the image of ξ in the ring of Witt vectors $W(k) = W(\mathcal{O}_C^\flat/\mathfrak{m}_C^\flat)$ is p. We therefore have $|c_0|_{C^\flat} < 1$ and $|c_1 - 1|_{C^\flat} < 1$ (which is even more than we need). Note that, if K is an until of C^{\flat} for which there exists *one* embedding $u : \mathbf{Q}_{p}^{\text{cyc}} \hookrightarrow K$, then we can always find many others: namely, we can precompose f with the automorphism of $\mathbf{Q}_{p}^{\text{cyc}}$ given by $\zeta_{p^{n}} \mapsto \zeta_{p^{n}}^{\alpha}$ for any $\alpha \in \mathbf{Z}_{p}^{\times}$. Under the correspondence of Proposition 2, this corresponds to the action of \mathbf{Z}_{p}^{\times} on $\{x \in C^{\flat} : 0 < |x - 1|_{C^{\flat}} < 1\}$ by exponentiation. We therefore obtain the following:

Corollary 3. There is a canonical bijection

{

Untilts K containing
$$p^n$$
th roots of unity for all n }/isomorphism
 $\downarrow \sim$
 $\{x \in C^{\flat} : 0 < |x - 1|_{C^{\flat}} < 1\}/\mathbf{Z}_p^{\times}.$

Moreover, replacing an until (K, ι) by $(K, \iota \circ \varphi_C)$ has the effect of replacing the corresponding element $x \in C^{\flat}$ by $x^{1/p}$. We therefore have:

Corollary 4. There is a canonical bijection

The inverse bijection carries the equivalence class of an element $x \in C^{\flat}$ to the "vanishing locus" of $\log([x]) \in B$

The proof is based on the following:

Exercise 5. Let K be a field of characteristic zero which is complete with respect to non-archimedean absolute value having residue characteristic p, so that the logarithm $\log(y) \in K$ is defined for $y \in K$ satisfying $|y - 1|_K < 1$. Show that the construction $y \mapsto \log(y)$ induces a bijection

$$\{y \in K : |y-1|_K < |p|_K^{1/(p-1)}\} \to \{z \in K : |z| < |p|_K^{1/(p-1)}\}$$

(hint: the inverse is given by the exponential map $z \mapsto \exp(z) = \sum \frac{z^n}{n!}$).

Remark 6. The constant $|p|_K^{1/(p-1)}$ appearing in Exercise 5 is the best possible. Note that if K contains a primitive *p*th root of unity ζ_p , then ζ_p satisfies $|\zeta_p - 1|_K = |p|_K^{1/(p-1)} < 1$, and we have

$$p\log(\zeta_p) = \log(\zeta_p^p) = \log(1) = 0,$$

so that $\log(\zeta_p) = 0 = \log(1)$. It follows that the logarithm map is not injective when restricted to the *closed* disk $\{y \in K : |y-1|_K \le |p|_K^{1/(p-1)}\}$.

Proof of Corollary 4. Let x be an element of C^{\flat} satisfying $0 < |x-1|_{C^{\flat}} < 1$. Then, for any until (K, ι) of C^{\flat} , the element x^{\sharp} satisfies $|(x^{p^n})^{\sharp} - 1|_K < |p|_K^{1/(p-1)}$ for $n \gg 0$. Consequently, if $\log(x^{\sharp}) = 0$, then $\log((x^{p^n})^{\sharp}) = 0$ and therefore $(x^{p^n})^{\sharp} = 1$ by virtue of Exercise ??. Choose n as small as possible, so that $(x^{p^{n-1}})^{\sharp} \neq 1$ (this is possible since we have assumed that $x \neq 1$). Composing ι with a suitable power of the Frobenius map $\varphi_{C^{\flat}}$, we can assume that n = 0: that is, we have $x^{\sharp} = 1$ but $(x^{1/p})^{\sharp} \neq 1$, so that (K, ι) is the untilt associated to the element x in the proof of Proposition 2.

Remark 7. One can show that when C^{\flat} is algebraically closed, then every until of C^{\flat} is also algebraically closed. It follows in this case that *every* Frobenius orbit of characteristic zero until of C^{\flat} can be realized as the vanishing locus of some element of $B^{\varphi=p}$ having the form $\log([x])$; moreover, this element of $B^{\varphi=p}$ is unique up to the action of \mathbf{Q}_p .

Our next goal is to show that the functions of the form log([x]) have simple zeros: that is, they do not vanish with multiplicity at any point of K. To make this idea precise, we need some auxiliary constructions.

Construction 8. Let $y = (K, \iota)$ be a characteristic zero until of C^{\flat} , so that we have a canonical surjection $\theta : \mathbf{A}_{inf} \twoheadrightarrow \mathcal{O}_K$ whose kernel is a principal ideal (ξ). We saw in Lecture 3 that the ring \mathbf{A}_{inf} is ξ -adically complete: that is, it is isomorphic to the inverse limit of the tower

$$\cdots \to \mathbf{A}_{\inf}/(\xi^4) \twoheadrightarrow \mathbf{A}_{\inf}/(\xi^3) \twoheadrightarrow \mathbf{A}_{\inf}/(\xi^2) \twoheadrightarrow \mathbf{A}_{\inf}/(\xi) \simeq \mathcal{O}_K.$$

We let $B_{dR}^+ = B_{dR}^+(y)$ denote the inverse limit of the diagram

$$\cdots \to (\mathbf{A}_{\inf}/(\xi^4))[\frac{1}{p}] \twoheadrightarrow (\mathbf{A}_{\inf}/(\xi^3))[\frac{1}{p}] \twoheadrightarrow \mathbf{A}_{\inf}/(\xi^2)[\frac{1}{p}] \twoheadrightarrow (\mathbf{A}_{\inf}/(\xi))[\frac{1}{p}] \simeq \mathcal{O}_K[\frac{1}{p}] = K.$$

Remark 9. The ring B_{dR}^+ does not depend on the choice of generator ξ for the ideal ker(θ): in each of the expressions above, we can replace the ideal (ξ^n) by ker $(\theta)^n$. However, it does depend on the choice of untilt $y = (K, \iota)$.

Remark 10. In the situation of Construction 8, we can replace each of the localizations $(\mathbf{A}_{inf}/(\xi^n))[\frac{1}{p}]$ by $(\mathbf{A}_{inf}/(\xi^n))[\frac{1}{[\pi]}]$. Having made this replacement, the construction is sensible even when $K \simeq C^{\flat}$ has characteristic p. In this case, each quotient $\mathbf{A}_{inf}(\xi^n)[\frac{1}{[\pi]}]$ can be identified with $W_n(\mathcal{O}_C^{\flat})[\frac{1}{[\pi]}] \simeq W_n(\mathcal{O}_C^{\flat}[\frac{1}{\pi}]) \simeq W_n(\mathcal{O}_C^{\flat}[\frac{1}{\pi}]) \simeq W_n(\mathcal{O}_C^{\flat})$. Consequently, the "characteristic p" analogue of the ring B_{dR}^+ is just the ring of Witt vectors $W(C^{\flat})$.

Proposition 11. In the situation of Construction 8, B_{dR}^+ is a complete discrete valuation ring, and the element ξ is a uniformizer. In other words:

- (a) The image of ξ in B_{dR}^+ is not a zero-divisor.
- (b) The ring B_{dR}^+ is ξ -adically complete.
- (c) The quotient $B_{dR}^+/(\xi)$ is a field.

Proof. We first prove (a). Let f be an element of B_{dR}^+ , given by a system of elements $x_n \in (\mathbf{A}_{inf}/(\xi^n))[\frac{1}{p}]$. We saw in Lecture 3 that ξ is not a zero divisor in \mathbf{A}_{inf} and p is not a zero-divisor in $\mathbf{A}_{inf}/(\xi)$, and is therefore not a zero-divisor in $\mathbf{A}_{inf}/(\xi^n)$ for all n. Consequently, we can view the quotient $\mathbf{A}_{inf}/(\xi^n)$ as a subring of the localization $(\mathbf{A}_{inf}/(\xi^n))[\frac{1}{p}]$. We can therefore choose some $k \gg 0$ (depending on n) such that $p^k x_n$ belongs to $\mathbf{A}_{inf}/(\xi^n)$. If $\xi x = 0$, then each $p^k x_n$ is annihilated by ξ in $\mathbf{A}_{inf}/(\xi^n)$, so we can write $p^k x_n = \xi^{n-1} y_n$ for some $y_n \in \mathbf{A}_{inf}/(\xi^n)$. Reducing modulo (ξ^{n-1}) , we conclude that $p^k x_{n-1} = 0$ in $\mathbf{A}_{inf}/(\xi^{n-1})$, so that $x_{n-1} = 0$. Since n is arbitrary, it follows that x = 0.

Note that each of the projection maps $B_{\mathrm{dR}}^+ \to (\mathbf{A}_{\mathrm{inf}}/(\xi^m))[\frac{1}{p}]$ annihilates (ξ^m) and therefore factors as a surjection $\rho: B_{\mathrm{dR}}^+/(\xi^m) \to (\mathbf{A}_{\mathrm{inf}}/(\xi^m))[\frac{1}{p}]$. We claim that ρ is an isomorphism: that is, if x is an element of B_{dR}^+ whose image in $(\mathbf{A}_{\mathrm{inf}}/(\xi^m))[\frac{1}{p}]$ vanishes, then x is divisible by ξ^m . Write $x = \{x_n\}_{n\geq 0}$ as above. For each $n \geq m$, we can choose $k(n) \gg 0$ such that $p^{k(n)}x_n \in \mathbf{A}_{\mathrm{inf}}/(\xi^n)$. Then the image of $p^{k(n)}x_n$ in $\mathbf{A}_{\mathrm{inf}}/(\xi^m)$ vanishes, so we can write $p^{k(n)}x_n = \xi^m y_n$ for some $y_n \in \mathbf{A}_{\mathrm{inf}}/(\xi^{n-m})$. Then x is the product of ξ^m with the element of B_{dR}^+ given by the sequence $\{\frac{y_n}{p^{k(n)}}\}_{n\geq m}$.

It follows from the preceding argument that B_{dR}^+ can be identified with the limit $\varprojlim B_{dR}^+/(\xi^m)$ and is therefore ξ -adically complete. Moreover, in the case m = 1 we obtain an isomorphism $B_{dR}^+/(\xi) \simeq K$ which proves (c).

Remark 12. Since B_{dR}^+ is a complete discrete valuation ring whose residue field $B_{dR}^+/(\xi) \simeq K$ has characteristic zero, it is abstractly isomorphic to the formal power series ring $K[[\xi]]$. Beware that there is no canonical isomorphism of B_{dR}^+ with $K[[\xi]]$.

Definition 13. We let B_{dR} denote the fraction field of the discrete valuation ring B_{dR}^+ (that is, the ring $B_{dR}^+[\frac{1}{\xi}]$).

Heuristically, if we think of the collection Y of all characteristic zero untilts $y = (K, \iota)$ of C^{\flat} as an analogue of the punctured unit disk D^{\times} then $B^+_{dR}(y)$ is the analogue is the analogue of the *completed local* ring $\widehat{O}_{D^{\times},y}$ at a point $y \in D^{\times}$ (which is isomorphic to the power series ring $\mathbf{C}[[t]]$, where t is any local coordinate of D^{\times} at the point y (for example, we can take t = z - y).

Note that, for every characteristic zero untile $y = (K, \iota)$ of C^{\flat} , we have a canonical map $\mathbf{A}_{inf} \to B_{dR}^+$. Moreover, the composite map $\mathbf{A}_{inf} \to B_{dR}^+ \to B_{dR}^+/(\xi) \simeq K$ carries p and $[\pi]$ to invertible elements $p, \pi^{\sharp} \in K$. Consequently, the images of p and $[\pi]$ in B_{dR}^+ are invertible: that is, we have a map $\mathbf{A}_{inf}[\frac{1}{p}, \frac{1}{[\pi]}] \to B_{dR}^+$, which we will denote by $f \mapsto \hat{f}_y$.

Proposition 14. Let $0 < a \le b < 1$ be real numbers satisfying $a \le |p|_K \le b$. Then the map $f \mapsto \hat{f}_y$ admits a canonical extension to a ring homomorphism $B_{[a,b]} \to B_{dB}^+$, which we will also denote by $f \mapsto \hat{f}_y$.

Note that Proposition 14 is consistent with our heuristics: if we think of $B_{[a,b]}$ as the ring of "holomorphic" functions on the untilts K satisfying $a \leq |p|_K \leq b$, then we should be able to evaluate elements of $B_{[a,b]}$ not only at the point K (to obtain an element of K itself), but also "infinitesimally close" to K (to obtain an element of B_{dR}^+).

Proof. Without loss of generality, we may assume that $a = |p|_K = b$. Moreover, we can assume that the pseudo-uniformizer $\pi \in C^{\flat}$ is chosen so that $|\pi|_{C^{\flat}} = |p|_K$. In this case, the ring $B_{[a,b]}$ is obtained from the subring $\mathbf{A}_{\inf}[\frac{[\pi]}{p}, \frac{p}{[\pi]}]$ by first *p*-adically completing and then inverting the prime number *p*. For each $n \ge 0$, \overline{e} determines a ring homomorphism

$$\overline{e}_n: \mathbf{A}_{\inf}[\frac{[\pi]}{p}, \frac{p}{[\pi]}] \to B^+_{\mathrm{dR}}/(\xi^n) \simeq (\mathbf{A}_{\inf}/(\xi^n))[\frac{1}{p}].$$

We claim that there exists an integer $k \gg 0$ (depending on n) such that the image of \overline{e}_n is contained in

$$p^{-k}(\mathbf{A}_{\inf}/(\xi^n)) \subseteq (\mathbf{A}_{\inf}/(\xi^n))[\frac{1}{p}]$$

Assuming this is true, we can use the fact that $p^{-k}(\mathbf{A}_{\inf}/(\xi^n))$ is *p*-adically complete to extend \overline{e}_n to a map (of abelian groups) from the *p*-adic completion of $\mathbf{A}_{\inf}\left[\frac{[\pi]}{p}, \frac{p}{[\pi]}\right]$ to $p^{-k}(\mathbf{A}_{\inf}/(\xi^n))$. Inverting *p*, we then obtain a map (of commutative rings)

$$e_n: B_{[a,b]} \to B_{\mathrm{dR}}^+/(\xi^n) \simeq (\mathbf{A}_{\mathrm{inf}}/(\xi^n))[\frac{1}{p}].$$

These maps are compatible as n varies, and determine the desired homomorphism $B_{[a,b]} \to B_{dR}^+$.

It remains to prove the existence of k. Define $f, g \in B^+_{dR}/(\xi^n)$ by the formulae

$$f = \overline{e}_n(\frac{[\pi]}{p})$$
 $g = f^{-1} = \overline{e}_n(\frac{p}{[\pi]})$

Our assumption that $|\pi|_{C^{\flat}} = |p|_{K}$ guarantees that the images of f and g under the map $B_{\mathrm{dR}}^{+}/(\xi^{n}) \rightarrow B_{\mathrm{dR}}^{+}/(\xi) \simeq K$ belong to the valuation ring \mathcal{O}_{K} . Consequently, we can find elements $f', g' \in \mathbf{A}_{\mathrm{inf}}/(\xi^{n})$ satisfying

$$f \equiv f' \mod \xi \qquad g \equiv g' \mod \xi.$$

We therefore have

$$f = f' + \frac{\xi}{p^c} f'' \qquad g = g' + \frac{\xi}{p^c} g''$$

for some other elements $f'', g'' \in \mathbf{A}_{inf}/(\xi^n)$ and some integer $c \gg 0$. In this case, every power of f admits a binomial expansion

$$f^{m} = (f' + \frac{\xi}{p^{c}}f'')^{m}$$

= $\sum_{i=0}^{m} {m \choose i} f'^{m-i} (\frac{\xi}{p^{c}}f'')^{i}$
= $\sum_{i=0}^{n-1} {m \choose i} f'^{m-i} (\frac{\xi}{p^{c}}f'')^{i}$
 $\in p^{-nc}(\mathbf{A}_{inf}/(\xi^{n})),$

and similarly with g in place of f.