
Lecture 7: The Artin-Hasse Exponential

October 12, 2018

Throughout this lecture, we fix a perfectoid field C[ of characteristic p, with valuation ring O[C . Fix an
element π ∈ C[ with 0 < |π|C[ < 1, and let B denote the completion of Ainf [

1
p ,

1
[π] ] with respect to the

family of Gauss norms | • |ρ for 0 < ρ < 1. In the previous lecture, we showed that for each element a ∈ m[C ,
the infinite sum ∑

n∈Z

[ap
n

]

pn

converges to an element x ∈ B satisfying ϕ(x) = px: that is, it is an element of the Frobenius eigenspace
Bϕ=p. We can now ask the following questions:

(1) Does every element of the eigenspace Bϕ=p have the form
∑
n∈Z

[ap
n
]

pn for some element a ∈ m[C? If so,
is the element a uniquely determined?

(2) Note that Bϕ=p is a vector space over Qp. Is the collection of elements of the form
∑
n∈Z

[ap
n
]

pn closed
under addition? If so, how do we add them?

Note that if every element of B were to admit a unique Teichmüller expansion, then the analysis of
the previous lecture would give an affirmative answer to Question (1). We will eventually show that the
answer to Question (1) is “yes” (even though we do not have existence and uniqueness results for Teichmüller
expansions in general), but this will need to wait until we know a little bit more about the ring B. Our goal
in this lecture is to show that, even without knowing the answer to (1), we can nevertheless answer Question

(2) by describing the construction a 7→
∑
n∈Z

[ap
n
]

pn in a different way.

Exercise 1. Let A be an algebra over Qp equipped with a norm | • |A satisfying the condition

|x · y|A ≤ |x|A · |y|A.

Let x ∈ A be an element satisfying |x− 1|A < 1. Show that the infinite sum

log(x) =
∑
k>0

(−1)k+1

k
(x− 1)k

is a well-defined element of the completion Â (that is, the individual terms (−1)k+1

k (x− 1)k converge to zero
as k →∞).

Assume that A is commutative, and let y ∈ A be another element satisfying |y − 1|A < 1. Show that xy

satisfies |xy − 1|A < 1 and log(xy) = log(x) + log(y) (in the completion Â).

Example 2. Let x be an element of C[ satisfying |x− 1|C[ < 1. Note that [x]− 1 is an element of the ring

Ainf = W (O[C), and therefore admits a Teichmüller expansion

[x]− 1 =
∑
n≥0

[cn]pn

1



where the coefficients cn satisfy |cn|C[ ≤ 1. Moreover, we have c0 = x− 1, so that |c0|C[ < 1. For each real
number ρ ∈ (0, 1), we have

|[x]− 1|ρ = sup{|cn|C[ρn} ≤ max(|c0|C[ , ρ) < 1.

Applying Exercise 1, we conclude that the series

log([x]) =
∑
k>0

(−1)k+1

k
([x]− 1)k

converges with respect to the Gauss norm | • |ρ. Since ρ is arbitrary, it follows that log([x]) is a well-defined
element of the ring B. Moreover, if y is another element of C[ satisfying |y − 1|C[ < 1, we have an identity

log([xy]) = log([x][y]) = log([x]) + log([y]).

Remark 3. For each x ∈ 1 + m[C , we have

ϕ(log([x])) = log(ϕ([x])) = log([xp]) = p log([x]).

That is, log([x]) actually belongs to the eigenspace Bϕ=p ⊆ B.

We now have two explicit procedures for producing elements of the vector space Bϕ=p: by forming

Teichmüller expansions
∑
n∈Z

[ap
n
]

pn (which converge for elements a ∈ m[C which are “close to zero”), and by

forming logarithms log([x]) (which converge for elements x ∈ 1 + m[C which are “close to one”). We will
show that these procedures produce the same elements.

Theorem 4. There exists a commutative diagram of sets

1 + m[C
log[•]

''
m[C

E

77

a 7→
∑ [ap

n
]

pn // Bϕ=p,

where E is bijective.

Corollary 5. The collection of elements of B of the form
∑
n∈Z

∑
n∈Z

[ap
n
]

pn is closed under addition.

Let’s assume for a moment that Theorem 4 is true, and try to guess the nature of the function E. It
follows from Theorem 4 that we can define an addition law

⊕
on the set m[C , having the property that∑

n∈Z

[(a
⊕
b)p

n

]

pn
= (

∑
n∈Z

[ap
n

]

pn
) + (

∑
n∈Z

[bp
n

]

pn
).

Namely, we define a ⊕ b = E−1(E(a) · E(b)), so that we have an identity E(a ⊕ b) = E(a) · E(b). We can
therefore think of E as something like an exponential map, which relates the modified addition law

⊕
on

m[C (related to the addition of Teichmüller expansions) to the usual multiplication on 1 + m[C .

Lemma 6. Let exp(x) =
∑
n≥0

xn

n! be the power series for the exponential function, regarded as an element
of Q[[x]]. Then we have an identity of formal power series

exp(x) =
∏
d>0

(
1

1− xd
)
µ(d)
d .

Here µ denotes the Möbius function

µ(d) =

{
(−1)n if d = p1 · · · pn for distinct primes p1, p2, . . . , pn

0 otherwise.
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Proof. Taking the logarithm of the right hand side yields

log(
∏
d>0

(
1

1− xd
)
µ(d)
d =

∑
d>0

log((
1

1− xd
)
µ(d)
d )

=
∑
d>0

µ(d)

d
log(

1

1− xd
)

=
∑
d>0

µ(d)

d

∑
d′>0

xd
′d

d′

=
∑
n>0

xn

n

∑
d|n

µ(d)

= x.

where the final equality follows from the identity

∑
d|n

µ(d) =

{
1 if n = 1

0 otherwise.
(1)

The exponential function x 7→ exp(x) has good convergence properties over the real numbers (where
the coefficients 1

n! are small), but much weaker convergence properties when working p-adically (where the
coefficients 1

n! are large). However, we can get a function with better p-adic behavior by “leaving out” the
problematic terms in the product decomposition of Lemma 6.

Definition 7. Fix a prime number p. The Artin-Hasse exponential E(x) is the power series

E(x) =
∏

(d,p)=1

(
1

1− xd
)
µ(d)
d ,

where the product is taken over the collection of all positive integers d which are relatively prime to p.

Note that the coefficients of this power series are integral at p: that is, we can think of E(x) as a power
series with coefficients in the subring Z(p) ⊆ Q, given by (in contrast with the usual exponential series
exp(x)).

Exercise 8. Show that, as a formal power series with rational coefficients, the Artin-Hasse exponential E(x)
is given by the formula

E(x) = exp(x+
xp

p
+
xp

2

p2
+ · · · ).

(Hint: take the logarithm of both sides and argue as in Lemma 6).

Since the power series E(x) = 1 + x + higher order terms has coefficients in Z(p), the construction

a 7→ E(a) determines a bijection from m[C to 1 +m[C . We claim that this bijection satisfies the requirements
of Theorem 4. In other words, we claim that for each element a ∈ m[C , we have an equality∑

n∈Z

[ap
n

]

pn
= log([E(a)]) = log([

∏
(d,p)=1

(
1

1− ad
)
µ(d)
d ])

in the ring B. We will establish this identity by manipulation of formal series, and leave it to the reader to
justify that our manipulations are legal (that is, that all of the infinite sums and products that we consider
are convergent with respect to each of the Gauss norms).
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We first recall that for any element y ∈ O[C , the Teichmüller representative [y] ∈W (O[C) can be computed

as the limit lim−→k→∞ ỹp
k

k , where ỹk is any element of W (O[C) lying over yp
−k

. In particular, for x ∈ m, we
have

[1− x] = lim
k→∞

(1− [xp
−k

])p
k

log
1

[1− x]
= lim

k→∞
pk log(

1

1− [xp−k ]
)

= lim
k→∞

pk
∑
m>0

[xmp
−k

]

m

=
∑

α∈Z[1/p],α>0

[xα]

α
.

We now write

log[
∏

(d,p)=1

(1− ad)
−µ(d)
d ] =

∑
(d,p)=1

µ(d)

d
log

1

[1− ad]

=
∑

(d,p)=1

∑
α∈Z[1/p],α>0

µ(d)
[adα]

dα

=
∑

β∈Z[1/p],β>0

∑
d

µ(d)
[aβ ]

β
,

where, in the final expression, we write β = pnk for (k, p) = 1 and d ranges over all divisors of k. It follows
from Equation (1) that this inner sum vanishes for k 6= 1: that is, we can neglect all values of β which are
not powers of p. Doing so, we obtain the expression

∑
n∈Z

[ap
n

]

pn
,

as desired.
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