Lecture 6: Definition of the Fargues-Fontaine Curve

October 29, 2018

Throughout this lecture, we fix a perfectoid field C® of characteristic p, with valuation ring O"C. Fix an
element m € C” with 0 < |7|c» < 1. We let Aips denote the ring of Witt vectors W (0%). In the previous
lecture, we defined the Gauss norm |e|, : Ainf[%, ﬁ] — R, for every real number p € (0,1). By definition,
it is given by the formula |} [c,]p"|, = sup{|cn|c» - p™}. For every pair of real numbers 0 < a < b < 1, we
let B, 3 denote the completion of A.inf[]%, ﬁ] with respect to the pair of norms | e |, and | e |;.

Exercise 1. Show that, for 0 < a < ¢ <b < 1, we have |f|. < sup{|fla,|f|p}.- Consequently, the completion

of Ainf[%, [—}T]] with respect to any finite collection of Gauss norms |e |, ,---,| e |, is given B, where
a = min{p;} and b = max{p;}.

Recall that the ring B is defined as the inverse limit kiLnB[a’b], where [a, b] ranges over the collection of

all closed intervals contained in (0, 1). Equivalently, we can describe B as the completion of Ainf[%, ﬁ] with
respect to all of the Gauss norms |e |, (for 0 < p < 1). This inverse limit inherits a topology, and each of the

norms | e |, on Aj,¢[L i]] admits a unique continuous extension to B (which we will also denote by | e |,).

p’
Moreover, a sequence { f, },>0 converges to f € B if and only if lim,, , |f — fn|, = 0 for all p € (0,1). By
virtue of Exercise 1, the collection of real numbers p which satisfies this condition is convex (so it suffices to

check convergence for real numbers of the form 4 and &2, for example).

Warning 2. The ring B is a topological vector space over Q,,, but it is not a p-adic Banach space: its
topology cannot be defined by a single norm. It is instead an example of a p-adic Frechet space. However,

it can still be regarded as a completion of Aj,¢[L i]] in the following sense: every element f € B can be

p’
realized as the limit of a sequence { f,,}, where each f,, belongs to Aju¢| ﬁ] For example, we can take any

1
p7
sequence satisfying
1
w w =

F-fliss -y <

for n > 1.

Let us describe these completion a little bit more concretely. Let V' be a Q,-vector space equipped with
a non-archimedean norm | e |y,. Suppose we are given a collection of vectors {v;};c; in V with the property
that, for every real number ¢ > 0, we have |v;|y < € for all but finitely many ¢ € I. In this case, the sum
> _icr Vi converges (absolutely) in the completion V of V with respect to the norm | e |y .

Exercise 3. Let V be a Q,-vector space equipped with a norm | o |/, and suppose we are given a sequence
of points vg, v1,ve,... € V. Show that the following conditions are equivalent:

e The sequence {v, },>0 is a Cauchy sequence (with respect to the metric d(v, w) = |v — w|y ).
(] limnﬁoo |’Un — Un,1|v =0.

e The sum v + >, ((vn — vp_1) is (absolutely) convergent in the completion VofV.



If these conditions are satisfied, then the limit lim,,_, v, (in the completion V of V') coincides with vg +
> n>0(Un —vn_1). Consequently, any element of V' can be written as an (absolutely convergent) sum of

elements of V.
Variant 4. Let V be the completion of a Q,,-vector space V' is a Q,-vector space with respect to a pair of

norms | e |y and | e |y. In this case, a sum Y., v; converges in V provided that lim |v;|y = lim v}, = 0.

iel
Let us now specialize to the case of interest to us.

Example 5 (Teichmiiller Expansions). Suppose we are given a formal sum

Z[cn]p",

neZ

where each ¢, is an element of C®. Then:
e The sum converges for the Gauss norm | e |, if and only if

Jim lenlorg” =0 lim el =0

e The sum converges in By, if and only if it converges for the Gauss norms | e |, and | e |;. That is, if
and only if we have
: n __ : |C—71|C7b _
nli)n;o |cn|cpd™ =0 nh_{r;o = 0.

e The sum converges in B if and only if it converges with respect to the Gauss norm | e |, for every
p € (0,1). This is equivalent ot the statement

1/n

U =0.

lim sup |cn|é/bn <1 lim |e_p]
n>0 n—oo

Remark 6 (Complex-Analytic Analogue). Let f be a holomorphic function defined on the punctured unit
disk D* ={z€ C:0 < |z| <1}. Then f admits a Laurent series expansion

f(z) = Z cn2",
where the coefficients ¢,, are complex numbers satisfying the conditions

lim sup |cn\1/” <1 lim |c_n|1/" =0.

Conversely, for any sequence {c,}necz of complex numbers satisfying these conditions, the sum ) ¢,2"
determines a holomorphic function on D*.

Warning 7. It follows from Example 5 that every collection {c,}ncz of elements of C" satisfying the

conditions

1i 1/n <1 li
im sup e |1/ < im |
n>0 n—oo

1/n

o =0

determines an element of the ring B, given by » _,[c,]p". However, it is not clear that every element of B
can be represented in this way, or that such representations are unique when they exist.

Recall that C” is a perfect field of characteristic p, so the Frobenius map

cp:Cb—>C" o(c) =



is an automorphism of C?. This automorphism restricts to an automorphism of the valuation ring Obc, and
therefore induces an automorphism of the ring of Witt vectors Aj,s = W(Obc) We will denote both of these
automorphisms also by . Note that ¢([r]) = [7]P, so that inverting [r] has the same effect as inverting
([r]). Consequently, the Frobenius automorphism of A;,s extends to an automorphism of Ainf[%, ﬁ}, which
we will again denote by ¢. On Teichmiiller expansions, it is given by the formula

In particular, we have

o( > lealp™lp = sup{lealZsp™} = (sup{lenlcop™ 1P = | Y lealp™ [0,
n>>—oo n>>—oo

which we can write more simply as
le(F)lpr = (1£1p)"

It follows that the automorphism ¢ of Aj.¢ ﬁ] extends to an isomorphism By, 3 =~ Bjgr»). Passing to

1
p’
the inverse limit over all intervals [a,b] C (0,1
(once again) denote by ¢.

), we obtain an automorphism of the ring B, which we will

Notation 8. For every integer n, we let B¥=P" denote the subset of B consisting of those elements
satisfying ¢(x) = p™a.

Note that if f belongs to B#=P" and g belongs to B#=P" then we have ¢(fg) = o(f) - ¢(g) = (p"f) -
(p™g) = p"T™ fg, so that fg belongs to B#=P""" Tt follows that we can regard the sum

Do
neZ
as a graded ring. We can now finally define the main object of study in this course:

Definition 9. The Fargues-Fontaine curve is the scheme Proj(€D,~, B*=F").

n

To get a feeling for what is going on, let’s try to write down some elements of the graded ring €@ Be=P

Suppose that f is an element of B which admits a convergent Teichmiiller expansion

f= Z[cn}pn,

neZ

so that

lim sup |e, |/™ < 1 lim |c_,|Y™ = 0.
n>0 n—oo

In this case, the elements p* f and ¢(f) also admits convergent Teichmiiller expansions

Pkf = Z[Cn]anc = Z[Cn—k]pn

neZ nez
o(f) = Sl
neZz

Consequently, to satisfy the equation ¢(f) = p¥f, it is sufficient (but perhaps not necessary) to have a
termwise equality of Teichm”uller expansions ¢, = cb.



Example 10. Suppose that k < 0. Then, for each n € Z, the sequence

1/p* 1/p°

1
/p’ Cni2k = Cy ; Cn43k = Cp P

Cntk = CY
is required to converge to zero. It follows that ¢, = 0 for all n. In other words, there are no “obvious”
k
nonzero elements of B¥=P" for k < 0. (We will see in Lecture 11 that there are no nonzero elements at all:
that is, the ring @, 4 B#=P" is nonnegatively graded.)

Example 11. Suppose that k& = 0. In this case, for a Teichmiiller expansion ) ., [c,]p" to represent an

element of B‘p:pk, it is sufficient to have ¢,, = ¢ for all n: that is, each coeflicient belongs to the subfield
F, C C®. In this case, the convergence condition on the coefficients ¢, just demands that ¢, = 0 for n < 0.
These are exactly the Teichmiiller expansions of elements of Q,, = W(Fp)[%]. We therefore obtain a map

Q, —~ B¥=?". We will see later that this map is an isomorphism.

Example 12. Suppose that £ > 0. In this case, the condition ¢,_; = £ shows that the entire sequence

is determined by a finite number of terms cg,cy,...,cx_1. Moreover, for the Teichmiiller expansion to

converge, each of these coefficients must belong to mbc. Via this procedure, we can write down a large

number of elements of B¥=?" (beware that it is not clear if these elements are distinct, or if all elements of
B#=P" can be obtained in this way).

Example 13. In the case k = 1, we see that every element c € mbc determines an element of B¥=P, given
by the formula Y, _,[c!/?"]p". We will study these elements in the next lecture.

Remark 14. Note that every element of the ring Amf[ admits a wunique Teichmiiller expansion

p’ m}
Y s —osolcn]p™, and therefore belongs to Amf[ [1]]*0 ?" if and only if ¢, = & for all n. If k # 0,
the vanishing of ¢,, for n < 0 implies the vanlshlng of ¢, all n. In other words, the graded ring

@ Amf

is just the field Q,. To obtain interesting elements of the ring P

1 1
p [7]
¢=p" it is important to complete the

nGZ
vector space Amf[p [W]] by allowing “essential singularities at p = 0.”



