
Lecture 6: Definition of the Fargues-Fontaine Curve

October 29, 2018

Throughout this lecture, we fix a perfectoid field C[ of characteristic p, with valuation ring O[C . Fix an

element π ∈ C[ with 0 < |π|C[ < 1. We let Ainf denote the ring of Witt vectors W (O[C). In the previous
lecture, we defined the Gauss norm |• |ρ : Ainf [

1
p ,

1
[π] ]→ R≥0, for every real number ρ ∈ (0, 1). By definition,

it is given by the formula |
∑

[cn]pn|ρ = sup{|cn|C[ · ρn}. For every pair of real numbers 0 < a ≤ b < 1, we
let B[a,b] denote the completion of Ainf [

1
p ,

1
[π] ] with respect to the pair of norms | • |a and | • |b.

Exercise 1. Show that, for 0 < a ≤ c ≤ b < 1, we have |f |c ≤ sup{|f |a, |f |b}. Consequently, the completion
of Ainf [

1
p ,

1
[π] ] with respect to any finite collection of Gauss norms | • |ρ0 , · · · , | • |ρn is given B[a,b], where

a = min{ρi} and b = max{ρi}.

Recall that the ring B is defined as the inverse limit lim←−B[a,b], where [a, b] ranges over the collection of

all closed intervals contained in (0, 1). Equivalently, we can describe B as the completion of Ainf [
1
p ,

1
[π] ] with

respect to all of the Gauss norms | • |ρ (for 0 < ρ < 1). This inverse limit inherits a topology, and each of the
norms | • |ρ on Ainf [

1
p ,

1
[π] ] admits a unique continuous extension to B (which we will also denote by | • |ρ).

Moreover, a sequence {fn}n≥0 converges to f ∈ B if and only if limn→∞ |f − fn|ρ = 0 for all ρ ∈ (0, 1). By
virtue of Exercise 1, the collection of real numbers ρ which satisfies this condition is convex (so it suffices to
check convergence for real numbers of the form 1

N and N−1
N , for example).

Warning 2. The ring B is a topological vector space over Qp, but it is not a p-adic Banach space: its
topology cannot be defined by a single norm. It is instead an example of a p-adic Frechet space. However,
it can still be regarded as a completion of Ainf [

1
p ,

1
[π] ] in the following sense: every element f ∈ B can be

realized as the limit of a sequence {fn}, where each fn belongs to Ainf [
1
p ,

1
[π] ]. For example, we can take any

sequence satisfying

|f − fn| 1
n
≤ 1

n
|f − fn|1− 1

n
≤ 1

n

for n > 1.

Let us describe these completion a little bit more concretely. Let V be a Qp-vector space equipped with
a non-archimedean norm | • |V . Suppose we are given a collection of vectors {vi}i∈I in V with the property
that, for every real number ε > 0, we have |vi|V < ε for all but finitely many i ∈ I. In this case, the sum∑
i∈I vi converges (absolutely) in the completion V̂ of V with respect to the norm | • |V .

Exercise 3. Let V be a Qp-vector space equipped with a norm | • |V , and suppose we are given a sequence
of points v0, v1, v2, . . . ∈ V . Show that the following conditions are equivalent:

• The sequence {vn}n≥0 is a Cauchy sequence (with respect to the metric d(v, w) = |v − w|V ).

• limn→∞ |vn − vn−1|V = 0.

• The sum v0 +
∑
n>0(vn − vn−1) is (absolutely) convergent in the completion V̂ of V .
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If these conditions are satisfied, then the limit limn→∞ vn (in the completion V̂ of V ) coincides with v0 +∑
n>0(vn − vn−1). Consequently, any element of V̂ can be written as an (absolutely convergent) sum of

elements of V .

Variant 4. Let V̂ be the completion of a Qp-vector space V is a Qp-vector space with respect to a pair of

norms | • |V and | • |V ′ . In this case, a sum
∑
i∈I vi converges in V̂ provided that lim |vi|V = lim |vi|′V = 0.

Let us now specialize to the case of interest to us.

Example 5 (Teichmüller Expansions). Suppose we are given a formal sum∑
n∈Z

[cn]pn,

where each cn is an element of C[. Then:

• The sum converges for the Gauss norm | • |ρ if and only if

lim
n→∞

|cn|C[ρn = 0 lim
n→∞

|c−n|C[ρ−n = 0.

• The sum converges in B[a,b] if and only if it converges for the Gauss norms | • |a and | • |b. That is, if
and only if we have

lim
n→∞

|cn|C[bn = 0 lim
n→∞

|c−n|C[

an
= 0.

• The sum converges in B if and only if it converges with respect to the Gauss norm | • |ρ for every
ρ ∈ (0, 1). This is equivalent ot the statement

lim sup
n>0

|cn|1/nC[ ≤ 1 lim
n→∞

|c−n|1/nC[ = 0.

Remark 6 (Complex-Analytic Analogue). Let f be a holomorphic function defined on the punctured unit
disk D× = {z ∈ C : 0 < |z| < 1}. Then f admits a Laurent series expansion

f(z) =
∑

cnz
n,

where the coefficients cn are complex numbers satisfying the conditions

lim sup
n>0

|cn|1/n ≤ 1 lim
n→∞

|c−n|1/n = 0.

Conversely, for any sequence {cn}n∈Z of complex numbers satisfying these conditions, the sum
∑
cnz

n

determines a holomorphic function on D×.

Warning 7. It follows from Example 5 that every collection {cn}n∈Z of elements of C[ satisfying the
conditions

lim sup
n>0

|cn|1/nC[ ≤ 1 lim
n→∞

|c−n|1/nC[ = 0

determines an element of the ring B, given by
∑
n∈Z[cn]pn. However, it is not clear that every element of B

can be represented in this way, or that such representations are unique when they exist.

Recall that C[ is a perfect field of characteristic p, so the Frobenius map

ϕ : C[ → C[ ϕ(c) = cp
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is an automorphism of C[. This automorphism restricts to an automorphism of the valuation ring O[C , and

therefore induces an automorphism of the ring of Witt vectors Ainf = W (O[C). We will denote both of these
automorphisms also by ϕ. Note that ϕ([π]) = [π]p, so that inverting [π] has the same effect as inverting
ϕ([π]). Consequently, the Frobenius automorphism of Ainf extends to an automorphism of Ainf [

1
p ,

1
[π] ], which

we will again denote by ϕ. On Teichmüller expansions, it is given by the formula

ϕ(
∑

n�−∞
[cn]pn) =

∑
n�−∞

[cpn]pn.

In particular, we have

|ϕ(
∑

n�−∞
[cn]pn)|ρ = sup{|cn|pC[ρ

n} = (sup{|cn|C[ρn/p})p = |
∑

n�−∞
[cn]pn|p

ρ1/p
,

which we can write more simply as
|ϕ(f)|ρp = (|f |ρ)p.

It follows that the automorphism ϕ of Ainf [
1
p ,

1
[π] ] extends to an isomorphism B[a,b] ' B[ap,bp]. Passing to

the inverse limit over all intervals [a, b] ⊆ (0, 1), we obtain an automorphism of the ring B, which we will
(once again) denote by ϕ.

Notation 8. For every integer n, we let Bϕ=p
n

denote the subset of B consisting of those elements x
satisfying ϕ(x) = pnx.

Note that if f belongs to Bϕ=p
m

and g belongs to Bϕ=p
n

, then we have ϕ(fg) = ϕ(f) · ϕ(g) = (pmf) ·
(png) = pn+mfg, so that fg belongs to Bϕ=p

n+m

. It follows that we can regard the sum⊕
n∈Z

Bϕ=p
n

as a graded ring. We can now finally define the main object of study in this course:

Definition 9. The Fargues-Fontaine curve is the scheme Proj(
⊕

n≥0B
ϕ=pn).

To get a feeling for what is going on, let’s try to write down some elements of the graded ring
⊕

n∈ZB
ϕ=pn .

Suppose that f is an element of B which admits a convergent Teichmüller expansion

f =
∑
n∈Z

[cn]pn,

so that
lim sup
n>0

|cn|1/n ≤ 1 lim
n→∞

|c−n|1/n = 0.

In this case, the elements pkf and ϕ(f) also admits convergent Teichmüller expansions

pkf =
∑
n∈Z

[cn]pn+k =
∑
n∈Z

[cn−k]pn

ϕ(f) =
∑
n∈Z

[cpn]pn.

Consequently, to satisfy the equation ϕ(f) = pkf , it is sufficient (but perhaps not necessary) to have a
termwise equality of Teichm”uller expansions cn−k = cpn.
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Example 10. Suppose that k < 0. Then, for each n ∈ Z, the sequence

cn+k = c1/pn , cn+2k = c1/p
2

n , cn+3k = c1/p
3

n , · · ·

is required to converge to zero. It follows that cn = 0 for all n. In other words, there are no “obvious”

nonzero elements of Bϕ=p
k

for k < 0. (We will see in Lecture 11 that there are no nonzero elements at all:
that is, the ring

⊕
n∈ZB

ϕ=pn is nonnegatively graded.)

Example 11. Suppose that k = 0. In this case, for a Teichmüller expansion
∑
n∈Z[cn]pn to represent an

element of Bϕ=p
k

, it is sufficient to have cn = cpn for all n: that is, each coefficient belongs to the subfield
Fp ⊆ C[. In this case, the convergence condition on the coefficients cn just demands that cn = 0 for n� 0.
These are exactly the Teichmüller expansions of elements of Qp = W (Fp)[

1
p ]. We therefore obtain a map

Qp → Bϕ=p
0

. We will see later that this map is an isomorphism.

Example 12. Suppose that k > 0. In this case, the condition cn−k = cpn shows that the entire sequence
is determined by a finite number of terms c0, c1, . . . , ck−1. Moreover, for the Teichmüller expansion to
converge, each of these coefficients must belong to m[C . Via this procedure, we can write down a large

number of elements of Bϕ=p
k

(beware that it is not clear if these elements are distinct, or if all elements of

Bϕ=p
k

can be obtained in this way).

Example 13. In the case k = 1, we see that every element c ∈ m[C determines an element of Bϕ=p, given
by the formula

∑
n∈Z[c1/p

n

]pn. We will study these elements in the next lecture.

Remark 14. Note that every element of the ring Ainf [
1
p ,

1
[π] ] admits a unique Teichmüller expansion∑

n�−∞[cn]pn, and therefore belongs to Ainf [
1
p ,

1
[π] ]

ϕ=pk if and only if cn−k = cpn for all n. If k 6= 0,

the vanishing of cn for n� 0 implies the vanishing of cn all n. In other words, the graded ring⊕
n

Ainf [
1

p
,

1

[π]
]ϕ=p

n

is just the field Qp. To obtain interesting elements of the ring
⊕

n∈ZB
ϕ=pn , it is important to complete the

vector space Ainf [
1
p ,

1
[π] ] by allowing “essential singularities at p = 0.”
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