
Lecture 5: Norms

October 29, 2018

Our goal in this lecture is to describe another way of thinking about some of the rings appearing in the
previous lecture. First, we review some topological algebra.

Definition 1. Let V be a topological vector space over Qp. We say that V is a p-adic Banach space if there
exists an open Zp-submodule V0 ⊆ V , which is closed under addition, such that V0 is p-adically complete as
an abelian group and satisfies V = V0[ 1p ].

Example 2. Fix a non-archimedean norm | • |Qp
on Qp, compatible with the usual topology. For example,

we can take the usual p-adic norm, characterized by |p|Qp
= 1

p ; however, it will be convenient not to assume
this.

Let V be a vector space over Qp. We define a norm on V to be a function | • |V : V → R≥0 satisfying

|λv|V = |λ|Qp
· |v|V |v + w|V ≤ max(|v|V , |w|V )

(this is sometimes called a pre-norm, with the term norm reserved for the case where |v|V = 0⇒ v = 0).

Any norm on V equips V with the structure of a (pre)metric space, with metric d(v, w) = |v − w|. If V
is separated and complete with respect to this metric, then it is a p-adic Banach space (take V0 = {v ∈ V :
|v|V ≤ 1} to be the “unit ball” of V ).

Remark 3. Every p-adic Banach space V can be obtained from the construction of Example 2. Let V0 ⊆ V
be an open Zp-module which is p-adically complete. We can then define a map | • |V : V → R≥0 by the
formula

|v|V = inf{|λ|Qp
: v ∈ λ · V0};

this is a norm on V , having V0 as the unit ball.

Example 4. Let V be a vector space over Qp equipped with a pair of norms | • |V and | • |′V (possibly with
respect to different choices of absolute value | • |Qp

and | • |′Qp
. We can then regard V as a metric space with

respect to the metric d(v, w) = |v − w|V + |v − w|′V . If V is complete with respect to this metric, then it
is a p-adic Banach space (the intersection of unit balls V0 = {v ∈ V : |v|V ≤ 1 and |v|′V ≤ 1} satisfies the
requirements of Definition 1).

Alternatively, in the case | • |Qp
= | • |′Qp

(which we can always arrange by raising to an appropriate

power), we can equip V with the norm v 7→ |v|V + |v|V ′ .

Example 5. Let K be any completely valued field of characteristic zero and residue characteristic p. Then
K is a p-adic Banach space.

Example 6. Let V0 be any abelian group which is p-adically complete and p-torsion free. Then V0 has the
structure of a module over the ring Zp, and the tensor product V = Qp⊗Zp

V0 = V0[ 1p ] can be regarded as a

p-adic Banach space (by equipping it with the topology where the subsets pnV0 form a neighborhood basis
of the identity).
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Example 7. Let M be an abelian group which is p-torsion free. We can then apply the construction of
Example 6 to the p-adic completion M̂ = lim←−M/pnM to obtain a p-adic Banach space M̂ [ 1p ].

Example 8. Let V be a Qp-vector space equipped with a norm. Then the completion of V (as a metric
space) is a Qp-Banach space.

Examples 7 and 8 are related. If V is a Qp-vector space equipped with a norm, then the unit ball
V0 = {v ∈ V : |v|V ≤ 1} is a p-torsion free abelian group. The completion of V with respect to its norm can

then be identified with V̂0[ 1p ], where V̂0 is the p-adic completion of V0.

Variant 9. Suppose that V is equipped with a pair of norms | • |V and | • |V ′ . Then the completion of V with

respect to the metric d(v, w) = |v−w|V + |v−w|′V is given by V̂0[ 1p ], where V0 = {v ∈ V : |v|V ≤ 1, |v|′V ≤ 1}.

Let us now turn to the example of interest to us. Fix a perfectoid field C[, with valuation ring O[C and

set Ainf = W (O[C). Fix an element π ∈ C[ satisfying 0 < |π|C[ < 1 and consider the localization Ainf [
1
p ,

1
[π] ].

Every element of this ring admits a Teichmüller expansion∑
n�−∞

[cn]pn

where the coefficients cn ∈ C[ are bounded.

Definition 10. [Gauss Norms] Fix a real number 0 < ρ < 1. For each element f =
∑
n�−∞[cn]pn ∈

Ainf [
1
p ,

1
[π] ], we define

|f |ρ = sup{|cn|C[ · ρn}.

Remark 11. In the situation of Definition 10, the real numbers |cn|C[ · ρn vanish for n � 0 and decay
exponentially as ρ → ∞. Consequently, the supremum sup{|cn|C[ · ρn} is exists and is realized by finitely
many values of n.

Notation 12. We let Y denote the set of all isomorphism classes of characteristic zero untilts (K, ι) of C[.
We will use the letter y to denote a typical point of Y , given by an untilt (K, ι) of C[. For every such point
y, we have a surjective ring homomorphism

θy : Ainf → OK
∑
n≥0

[cn]pn 7→
∑
n≥0

c]np
n

which extends to a ring homomorphism Ainf [
1
p ,

1
[π] ] → K. We denote the value of this homomorphism on

an element f ∈ Ainf [
1
p ,

1
[π] ] by f(y) ∈ K.

Given 0 < a ≤ b < 1, we let Y[a,b] ⊆ Y denote the subset consisting of those points y = (K, ι) satisfying
a ≤ |p|K ≤ b.

Remark 13. Let y = (K, ι) be a point of Y and let ρ = |p|K . Then, for every element f =
∑
n�−∞[cn]pn ∈

Ainf [
1
p ,

1
[π] ], we have

|f(y)|K = |
∑

n�−∞
c]np

n|K ≤ sup{|c]n|K · |p|nK} = sup{|cn|C[ · ρn} = |f |ρ.

Remark 14. Let f =
∑
n�−∞[cn]pn be an element of Ainf [

1
p ,

1
[π] . We will say that a real number ρ ∈ (0, 1)

is generic for f if the supremum sup{|cn|C[ρn} is achieved exactly once. That is, ρ is generic for f if there
is an integer n such that |f |ρ = |cn|C[ρn, and for all integers m 6= n we have |cm|C[ρm < |f |ρ. In this case,
if y = (K, ι) is a point of Y satisfying |p|K = ρ, the inequality of Remark 13 can be replaced by an equality
|f |ρ = |f(y)|K .
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Exercise 15. Let f be an element of Ainf [
1
p ,

1
[π] ]. Show that the set

{ρ ∈ (0, 1) : ρ is not generic for f }

is a discrete subset of (0, 1). In other words, if ρ is not generic for f , then ρ± ε will be generic for f for all
sufficiently small ε 6= 0.

Proposition 16. For each 0 < ρ < 1, the map | • |ρ : Ainf [
1
p ,

1
[π] ]→ R≥0 is a norm (in the sense of Example

2), compatible with the norm on Qp satisfying |p|Qp
= ρ.

Proof. We first show that |f + g|ρ ≤ max(|f |ρ, |g|ρ). Write f + g =
∑
n�−∞[cn]pn. Suppose that the

following conditions are satisfied:

(∗) The real number ρ is generic for f and belongs to the value group of C[.

In this case, we can choose a point y = (K, ι) ∈ Y satisfying |p|K = ρ (for example, by taking OK =
Ainf/([c]− p), where c ∈ C[ is any element satisfying |c|C[ = ρ). Remark 14 then gives

|f + g|ρ = |(f + g)(y)|K ≤ max(|f(y))|K , |g(y)|K) ≤ max(|f |ρ, |g|ρ).

It follows from Exercise 15 that the collection of real numbers ρ satisfying (∗) is dense in (0, 1). Consequently,
it follows by continuity that |f + g|ρ ≤ max(|f |ρ, |g|ρ) for all ρ ∈ (0, 1).

It follows for that each f ∈ Ainf [
1
p ,

1
[π] ] and each integer n, we have |nf |ρ ≤ |f |ρ. By a continuity

argument, we conclude that |λf |ρ ≤ |f |ρ for each λ ∈ Zp. If λ is an invertible element of Zp, then the same
argument gives |f |ρ ≤ |λf |ρ, so that |λf |ρ = |f |ρ = |λ|Qp

· |f |ρ. Since every nonzero element of Qp factors
as pnu, where u is an invertible element of Zp, we are reduced to checking the identity |λf |ρ = |λ|Qp

· |f |ρ
in the case λ = p: that is, the identity |pf |ρ = ρ · |f |ρ. This follows immediately from the definition.

Variant 17. For every pair of elements f, g ∈ Ainf [
1
p ,

1
[π] ], we have |f · g|ρ = |f |ρ · |g|ρ.

Proof. Assume first that the following condition is satisfied:

(∗) The element ρ is generic for f , g, and f · g, and belongs to the value group of C[.

As in the proof of Proposition 16, we can choose a point y = (K, ι) ∈ Y satisfying |p|K = ρ. In this case,
Remark 13 gives

|f · g|ρ = |(f · g)(y)|K = |f(y)|K · |g(y)|K = |f |ρ · |g|ρ.

We conclude by observing that the collection of real numbers ρ ∈ (0, 1) satisfying (∗) is dense, so by continuity
we have an equality |fg|ρ = |f |ρ · |g|ρ for all ρ ∈ (0, 1).

Proposition 18. Suppose that a and b belong to the value group of C[, so that we can choose elements
πa, πb ∈ C[ satisfying |πa|C[ = a and |πb|C[ = b. Then the intersection of unit balls

V0 = {f ∈ Ainf [
1

p
,

1

[π]
: |f |a ≤ 1, |f |b ≤ 1}

is the subring Ainf [
[πa]
p , p

[πb]
] of the previous lecture.

Proof. It follows from Proposition 16 and Variant 17 that V0 is a subring of Ainf [
1
p ,

1
[π] ]. This subring clearly

contains Ainf : note that if f =
∑
n≥0[cn]pn belongs to Ainf , then we automatically have

|f |ρ = sup
n≥0
{|cn|C[ · ρn} ≤ 1
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for any 0 < ρ < 1. Moreover, it also contains [πa]
p and p

[πb]
, by virtue of the equalities

| [πa]

p
|a = 1 | [πa]

p
|b =

a

b
< 1

| p
[πb]
|a =

a

b
< 1 | p

[πb]
|b = 1.

This shows that Ainf [
[πa]
p , p

[πb]
] is contained in V0.

We now prove the reverse containment. Suppose that f =
∑
n�−∞[cn]pn satisfies |f |a ≤ 1 and |f |b ≤ 1;

we wish to show that f belongs to Ainf [
[πa]
p , p

[πb]
]. By assumption, the absolute values |cn|C[ are bounded

above. We may therefore choose some integer m� 0 such that each product πmb cn belongs to C[. We then
have

f = (
∑
n<m

[cn]pn) + (
∑
n≥0

[cn+mπ
m
b ]pn)(

p

[πb]
)m

where the second summand belongs to Ainf [
p

[πb]
] (and therefore also to the unit ball of Ainf [

[πa]
p , p

[πb]
]).

Subtracting, we can reduce to the case where the Teichm”uller expansion of f is finite.

Our assumption that |f |a ≤ 1 and |f |b ≤ 1 guarantees that, for each integer n, we have

|cn|C[ · an ≤ 1 |cn|C[ · bn ≤ 1,

so that cnπ
n
a and cnπ

n
b belong to O[C . For n ≤ 0, this implies that [cn]pn = [cnπna ]( [πa]

p )−n belongs to

Ainf [
[πa]
p ]. For n ≥ 0, we instead learn that [cn]pn = [cnπ

n
b ]( p

[πb]
)n belongs to Ainf [

p
[πb]

]. It follows that f

belongs to the ring Ainf [
[πa]
p , p

[πb]
], as desired.

Corollary 19. Suppose that a and b belong to the value group of C[. Then the ring B[a,b] of the previous

lecture can be identified with the completion of Ainf [
1
p ,

1
[π] ] with respect to the pair of norms | • |a and | • |b.

We will henceforth use this Corollary to extend the definition of B[a,b] to the case where a and b do not

necessarily belong to the value group of C[). Note that if y = (K, ι) ∈ Y is an untilt satisfying a ≤ |p|K ≤ b,
then Remark 13 implies that the homomorphism

Ainf [
1

p
,

1

[π]
]→ K f 7→ f(y)

admits a continuous extension B[a,b] → K, which we will also denote by f 7→ f(y).
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