
Lecture 22: Line Bundles on Covers

November 23, 2018

Throughout this lecture, we fix an algebraically closed perfectoid field C[ of characteristic p. Let X
denote the Fargues-Fontaine curve, given by

X = Proj(
⊕
n≥0

Bϕ=p
n

).

In the previous lecture, we explained a strategy for producing semistable vector bundles of any given slope
λ = m

n on X:

• First, choose a finite degree n extension E of Qp.

• Then, choose a line bundle L of degree m on the fiber product XE = X ×Spec(Qp)
Spec(E).

The direct image of L along the map XE → X is then a semistable vector bundle of degree m and rank
n. This vector bundle is a priori dependent on the choice of extension E and line bundle L. But it turns
out not to matter: up to isomorphism, the resulting vector bundle depends only on the integers d and n.
First, independence of L is a consequence of the following:

Theorem 1. Let E be a finite extension of Qp. Then the degree map deg : Pic(XE)→ Z is an isomorphism.

To prove Theorem 1, it will suffice to show that, for every pair of closed points x, x′ ∈ XE , we have
OXE

(x) = OXE
(x′). We have already seen that this is true when E = Qp. Essentially, we proved this by

observing that OX(x) and OX(x′) can be identified with another line bundle O(1), whose definition did not
depend on a choice of point of X. We would like to show that something similar happens for the scheme
XE .

Notation 2. For the remainder of this lecture, we fix a finite extension field E of Qp of degree n. Then the
inclusion Qp ↪→ E admits an essentially unique factorization as

Qp ↪→ E0 ↪→ E,

where E0 is an unramified extension of Qp having some degree d (so that E0 'W (Fpd)[ 1p ] and E is a totally
ramified extension of E0 having some degree e; we then have n = d · e. We let OE denote the ring of integers
of E, and π ∈ OE a choice of uniformizer.

Exercise 3. Choose an embedding Fpd ↪→ O[C , which extends to a map W (Fpd) → W (O[C) = Ainf → B
and therefore a map E0 → B, whose image is stable under the dth power of the Frobenius map. Let t be
any homogeneous element of the graded ring

⊕
n≥0B

ϕ=pn . Show that the canonical map

B[
1

t
]⊗Qp

E → B[
1

t
]⊗E0

E
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induces an isomorphism

(B[
1

t
]⊗Qp

E)ϕ=1 ' (B[
1

t
]⊗E0

E)ϕ
d=1.

In the special case E0 = E, this recovers the isomorphism (B[ 1t ] ⊗Qp
E)ϕ=1 ' B[ 1t ]

ϕn=1 of the previous
lecture.

It follows that, if U ⊆ X is the complement of the vanishing locus of t and we set UE = U ×Spec(Qp)
E,

then (when t has positive degree) we can write UE = Spec((B[ 1t ]⊗E0
E)ϕ

d=1).

Construction 4. We attempt to construct a line bundle OXE
(1) on XE as follows:

• To each affine open subset U ⊆ X as above (given by the complement of the vanishing locus of t), we
set

OXE
(1)(UE) = (B[

1

t
]⊗E0 E)ϕ

d=π.

To simultaneously show that this construction “works” and prove Theorem 1, it will suffice to show that
OXE

(1) agrees with the line bundle OXE
(x), for any choice of point x ∈ XE . In other words, we need to find

a section of OXE
(1) which vanishes exactly at the point x. First, we need some terminology.

Notation 5. In the previous lecture, we let YE denote the set of isomorphism classes of triples (K, ι, u),
where (K, ι) is an untilt of C[ and u : E → K is an embedding of fields. Let Y ◦E ⊆ YE denote the subset
consisting of those triples where u|E0

is given by the composite map E0 → B → K (corresponding to the
embedding Fpd ↪→ C[ that we have chosen). Then Y ◦E is not stable under the Frobenius, but is stable under
its dth power; moreover, the inclusion Y ◦E ↪→ YE induces a bijection

Y ◦E/ϕ
dZ ' YE/ϕZ.

Recall that, for each point y = (K, ι) of Y , we have an evaluation map

B → K f 7→ f(y).

If we promote y to a point y = (K, ι, e) of Y ◦E , then this evaluation map admits an E-linear extension

B ⊗E0 E → K,

which we will denote by f 7→ f(y).

In fact, we can do a little bit better. Recall that K can be identified with the residue field of a discrete
valuation ring B+

dR(y) (with uniformizer we denote by ξ) and that the homomorphism B → K lifts to a map

B → B+
dR(y) f 7→ f̂y.

In particular, this allows us to view B+
dR(y) as an algebra over the field E0 ⊆ B. Since E is a separable

extension field of E0, the E0-algebra map

E
u−→ K ' B+

dR(y)/(ξ)

lifts uniquely to a homomorphism E → B+
dR(y). Amalgamating, we obtain a homomorphism

B ⊗E0
E → B+

dR(y),

which we will denote by f 7→ f̂y. In particular, this allows us to define an order of vanishing ordy(f) ∈
Z≥0∪{∞} for each f ∈ B⊗E0 E: namely, the supremum of those integers m such that f̂y is divisible by ξm.
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We will deduce Theorem 1 from the following result, which we prove in the next lecture:

Theorem 6. Let x be a closed point of XE, corresponding to a subset S ⊆ Y ◦E which is an orbit for the

action of ϕdZ. Then there exists an element f ∈ (B ⊗E0 E)ϕ
d=π satisfying

ordy(f) =

{
1 if y ∈ S
0 otherwise.

Example 7. In the case E = Qp and π = p, we can choose f ∈ Bϕ=p to be an element of the form log([ε])

for ε ∈ 1 + m[C .

Proof of Theorem 1 from Theorem 6. Assuming Theorem 6, we show that for each closed point x ∈ XE ,
the line bundle OXE

(x) on XE is isomorphic to the presheaf OXE
(1) described in Construction 4: this

will show both that OXE
(1) extends to a line bundle and that OXE

(x) is independent of x. Choose f ∈
(B ⊗E0

E)ϕ
d=π satisfying the conclusion of Theorem 6. We will show that, for every affine open subset

U ⊆ X (complementary to the vanishing locus of some homogeneous element t ∈
⊕
Bϕ=p

m

), multiplication
by f induces an isomorphism

OXE
(x)(UE)→ OXE

(1)(UE) = (B[
1

t
]⊗E0

E)ϕ
d=π.

Note that B ⊗E0 E is a finite flat ring extension of B (of degree e). Let N(f) ∈ B denote the norm
of f along this ring extension (that is, the determinant of the B-module homomorphism of B ⊗E0

E given

by multiplication by f). Note that, for each point y ∈ Y , we have N̂(f)y =
∏
f̂y, where the product

is taken over the set of all preimages of y in Y ◦E . It follows that the vanishing locus of N(f) is given
by a single orbit of ϕdZ on Y (and that N(f) has simple zeros at each point where it vanishes). Then
the product N(f)ϕ(N(f))ϕ2(N(f)) · · ·ϕd−1(N(f)) ∈ B vanishes on a single ϕZ-orbit of Y (again with
simple zeros), and can therefore be written as a product u log([ε]) where u is an invertible element of B
and ε ∈ 1 + m[C . Here log([ε]) vanishes at a single point of X, which can be identified with the image of
x under the projection map XE → X. Note that since f divides the norm N(f), it divides the product
N(f)ϕ(N(f))ϕ2(N(f)) · · ·ϕd−1(N(f)) = u log([ε]), and therefore also divides log([ε]).

We now distinguish two cases:

• Suppose that x does not belong to UE . Then log([ε]) is a divisor of t, so f is a divisor of t and is
therefore invertible in the ring B[ 1t ] ⊗E0

E. In this case, multiplication by f induces an isomorphism
of

OXE
(x)(UE) = (B ⊗E0 E)ϕ

d=1 f−→ (B ⊗E0 E)ϕ
d=π,

with inverse given by multiplication by 1
f .

• Suppose that x belongs to UE . Choose some other point x′ ∈ XE which does not belong to UE , and
let f ′ ∈ (B ⊗E0 E)ϕ=π satisfy the conclusion of Theorem 6 for the point x′. The preceding argument
shows that f ′ is invertible in B[ 1t ] ⊗E0 E. It follows that the ratio f

f ′ is a well-defined element of

(B[ 1t ] ⊗E0
E)ϕ=1, which we can identify with a regular function on UE with a simple zero at the

point x. Consequently, multiplication by f ′

f induces an isomorphism OXE
(UE)→ OXE

(x)(UE). It will
therefore suffice to show that the composite map

OXE
(UE)

f′
f−→ OXE

(x)(UE)
f−→ (B[

1

t
]⊗E0

E)ϕ
d=π

is an isomorphism. In other words, we may replace x by x′ and thereby reduce to the case treated
above.
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