Lecture 22: Line Bundles on Covers

November 23, 2018

Throughout this lecture, we fix an algebraically closed perfectoid field C” of characteristic p. Let X
denote the Fargues-Fontaine curve, given by

X = Proj( B*=").

n>0

In the previous lecture, we explained a strategy for producing semistable vector bundles of any given slope
A=2on X:

n

e First, choose a finite degree n extension E of Q,,.

e Then, choose a line bundle £ of degree m on the fiber product Xg = X X Spec(Q,) Spec(E).

The direct image of £ along the map Xz — X is then a semistable vector bundle of degree m and rank
n. This vector bundle is a priori dependent on the choice of extension F and line bundle £. But it turns
out not to matter: up to isomorphism, the resulting vector bundle depends only on the integers d and n.
First, independence of £ is a consequence of the following:

Theorem 1. Let E be a finite extension of Q,. Then the degree map deg : Pic(Xg) — Z is an isomorphism.

To prove Theorem 1, it will suffice to show that, for every pair of closed points z,2’ € Xpg, we have
Oxp(7) = Ox,(2"). We have already seen that this is true when E = Q,,. Essentially, we proved this by
observing that Ox (z) and Ox(z’) can be identified with another line bundle O(1), whose definition did not
depend on a choice of point of X. We would like to show that something similar happens for the scheme
Xp.

Notation 2. For the remainder of this lecture, we fix a finite extension field F of Q, of degree n. Then the
inclusion Q,, — E admits an essentially unique factorization as

Q, = Eo — E,

where Ej is an unramified extension of Q,, having some degree d (so that Fy ~ W(de)[%] and F is a totally
ramified extension of Fy having some degree e; we then have n = d-e. We let O denote the ring of integers
of E, and w € O a choice of uniformizer.

Exercise 3. Choose an embedding F,a — Obc, which extends to a map W (F,a) — W(O0%) = Ajs — B
and therefore a map Ey — B, whose image is stable under the dth power of the Frobenius map. Let ¢ be
any homogeneous element of the graded ring @nzo B#=P"_ Show that the canonical map

1 1
B[;] ®Qp E — B[E] ®E0 E



induces an isomorphism
1 _ 1 -
(Bl;) ®q, E)?™" = (B[] ©r, B)*" .

In the special case Ey = E, this recovers the isomorphism (B[7] ®q, E)?=t ~ B[%]“’":1 of the previous
lecture.

It follows that, if U C X is the complement of the vanishing locus of ¢t and we set Ug = U X Spec(Q,) E,
then (when ¢ has positive degree) we can write Up = Spec((B[$] ® g, E)#'=1).

Construction 4. We attempt to construct a line bundle Ox, (1) on X as follows:

e To each affine open subset U C X as above (given by the complement of the vanishing locus of t), we

set
Ox,(1)(Us) = (B[%] o1, E)"=".

To simultaneously show that this construction “works” and prove Theorem 1, it will suffice to show that
Ox,, (1) agrees with the line bundle Ox (), for any choice of point € Xg. In other words, we need to find
a section of Ox (1) which vanishes exactly at the point . First, we need some terminology.

Notation 5. In the previous lecture, we let Yr denote the set of isomorphism classes of triples (K, ¢, u),
where (K,:) is an untilt of C* and u : F — K is an embedding of fields. Let Y2 C Yz denote the subset
consisting of those triples where u|g, is given by the composite map Ey — B — K (corresponding to the
embedding Fpa — C” that we have chosen). Then Y3 is not stable under the Frobenius, but is stable under
its dth power; moreover, the inclusion Yz < Yg induces a bijection

Y /o™ = Y 2.
Recall that, for each point y = (K, ¢) of Y, we have an evaluation map
B—K = fly).
If we promote y to a point § = (K, ¢, e) of Y2, then this evaluation map admits an E-linear extension
B®g, F — K,

which we will denote by f — f(7).

In fact, we can do a little bit better. Recall that K can be identified with the residue field of a discrete
valuation ring B;R(y) (with uniformizer we denote by &) and that the homomorphism B — K lifts to a map

B—Bh(y) ]y

In particular, this allows us to view B;“R(y) as an algebra over the field Ey C B. Since F is a separable
extension field of Fy, the Ey-algebra map

E = K~ Bir(y)/(€)
lifts uniquely to a homomorphism F — B;{R(y). Amalgamating, we obtain a homomorphism

B®g, £ — B:R(y),

which we will denote by f — fg In particular, this allows us to define an order of vanishing ordgz(f) €
Z>oU{oo} for each f € B®p, E: namely, the supremum of those integers m such that fy is divisible by £™.



We will deduce Theorem 1 from the following result, which we prove in the next lecture:

Theorem 6. Let x be a closed point of X, corresponding to a subset S C Y2 which is an orbit for the
action of p9%. Then there evists an element f € (B ®g, E)WdZTr satisfying

1 ifges
0  otherwise.

ordg(f) = {

Example 7. In the case £ = Q,, and m = p, we can choose f € B¥~P to be an element of the form log([e])
foreec 1+ m%.

Proof of Theorem 1 from Theorem 6. Assuming Theorem 6, we show that for each closed point z € Xg,
the line bundle Ox,(z) on Xg is isomorphic to the presheaf Ox, (1) described in Construction 4: this
will show both that Ox, (1) extends to a line bundle and that Ox,(x) is independent of x. Choose f €
(B ®g, E)“"d:7r satisfying the conclusion of Theorem 6. We will show that, for every affine open subset
U C X (complementary to the vanishing locus of some homogeneous element ¢ € @ B¥=F"), multiplication
by f induces an isomorphism
1 d_
Oxp(2)(Up) = Oxz (1)(Ug) = (B[] ®5, £)* "

Note that B ®g, F is a finite flat ring extension of B (of degree e). Let N(f) € B denote the norm

of f along this ring extension (that is, the determinant of the B-module homomorphism of B ® g, E given

by multiplication by f). Note that, for each point y € Y, we have 17(7)?; = H]%7 where the product
is taken over the set of all preimages of y in Y2. It follows that the vanishing locus of N(f) is given
by a single orbit of %% on Y (and that N(f) has simple zeros at each point where it vanishes). Then
the product N(f)o(N(f))@?(N(f)) - ¢ 1(N(f)) € B vanishes on a single ¢%-orbit of ¥ (again with
simple zeros), and can therefore be written as a product ulog([¢]) where u is an invertible element of B
and € € 1+ m?,. Here log([e]) vanishes at a single point of X, which can be identified with the image of
2 under the projection map Xgr — X. Note that since f divides the norm N(f), it divides the product
N(He(N()P2(N(f)) - e H(N(f)) = ulog([e]), and therefore also divides log([e]).

We now distinguish two cases:

e Suppose that = does not belong to Ug. Then log([e]) is a divisor of ¢, so f is a divisor of ¢ and is
therefore invertible in the ring B [%] ®p, L. In this case, multiplication by f induces an isomorphism
of

d__ d__
Oxp(@)(Ug) = (B g, B)*'~" % (Beg, B)*' ",

with inverse given by multiplication by %

e Suppose that = belongs to Ug. Choose some other point 2’ € Xg which does not belong to Ug, and
let f' € (B®pg, F)?=" satisfy the conclusion of Theorem 6 for the point /. The preceding argument
shows that f’ is invertible in B[}] ®p, E. It follows that the ratio % is a well-defined element of
(B[}] ®pg, E)¢=!, which we can identify with a regular function on Ug with a simple zero at the
point z. Consequently, multiplication by fT, induces an isomorphism Ox ., (Ug) — Ox,(2)(Ug). It will
therefore suffice to show that the composite map

il
7

0x,(Up) -+ 0x,(2)(Up) & (BIy) @, B)*'="

is an isomorphism. In other words, we may replace x by z’ and thereby reduce to the case treated
above.
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