
Lecture 21: Covers of the Fargues-Fontaine Curve

November 21, 2018

Throughout this lecture, we fix an algebraically closed perfectoid field C[ of characteristic p. Let X
denote the Fargues-Fontaine curve, given by

X = Proj(
⊕
n≥0

Bϕ=p
n

).

Recall that if E is a nonzero vector bundle on X, the slope of E is defined by the formula

slope(E) =
deg(E)

rank(E)
.

We say that E is semistable if every nonzero subbundle E′ ⊆ E satisfies slope(E′) ≤ slope(E). Our first goal
in this lecture is to prove the following:

Proposition 1. Let λ = d
n be a rational number (where d and n are integers with n > 0). Then there exists

a semistable vector bundle E on X having degree d and rank n (hence slope λ = d
n).

Remark 2. The vector bundle E appearing in the statement of Proposition 1 is unique up to isomorphism.
We will return to this point in a future lecture.

In the case n = 1, Proposition 1 is trivial. Note that every line bundle L on X is automatically semistable
(since the only nonzero subbundle of L is L itself), so Proposition 1 merely asserts that for every integer d,
there exists a line bundle of degree d. Here we are exploiting the fact that line bundles on X are easy to
make: every divisor D ⊆ X determines a line bundle OX(D) on X. To produce vector bundles, we will need
to work harder. One possible strategy is to look for a map of schemes

π : X̃ → X

which is finite and flat of degree n. In that case, for any line bundle L on X̃, the direct image π∗(L) will be
a vector bundle of rank n on X. There is an obvious source of examples to consider.

Construction 3. Let E be a finite extension of the field Qp having degree n. We let XE denote the fiber
product X ×Spec(Qp)

Spec(E).

Let us enumerate some easy properties of this construction.

• Since E is a finite extension field of Qp, the map Spec(E) → Spec(Qp) is finite étale of degree n (in
particular, it is finite flat of degree n). It follows that the projection map π : XE → X is finite étale
of degree n. In particular, XE is also a Dedekind scheme.

• Since the unit map Qp → H0(X,OX) is an isomorphism, it follows that the unit map E → H0(XE ,OXE
)

is also an isomorphism. In particular, H0(XE ,OXE
) is a field, so the scheme XE is connected.
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• Let U ⊆ X be a nonempty affine open subset. Then X − U can be given as the vanishing locus of a
homogeneous element t ∈

⊕
m≥0B

ϕ=pm (which is nonzero of positive degree). In this case, we have

seen that U can be described as the spectrum of the ring B[ 1t ]
ϕ=1. Setting UE = U ×Spec(Qp)

E, it
follows that UE can be described as the spectrum of the ring

B[
1

t
]ϕ=1 ⊗Qp

E ' (B[
1

t
]⊗Qp

E)ϕ=1.

Here we extend the Frobenius automorphism ϕ : B → B to the tensor product B ⊗Qp
E by letting it

act trivially on the second factor.

• Let x ∈ X be a closed point corresponding to an untilt K of C[. Then the fiber product XE ×X {x}
can be identified with the spectrum of the tensor product E ⊗Qp

K. Since K is algebraically closed,
this tensor product just factors as a Cartesian product of n copies of K. That is, every closed point of
X has exactly n points of XE lying over it, each of which has the same residue field.

• Let Y denote the set of isomorphism classes of characteristic zero untilts (K, ι) of C[. Recall that the
set of closed points of X can be identified with the quotient Y/ϕZ. Using the same reasoning, we see
that the collection of closed points of the curve XE can be identified with the quotient YE/ϕ

Z; here YE
denotes the set of isomorphism classes of triples (K, ι, u), where K is a perfectoid field of characteristic
zero, ι : C[ ' K[ is an isomorphism, and u : E → K is a map of Qp-algebras (note in this situation,
K is an algebraically closed extension field of Qp, so there are exactly n choices for the embedding u).

Example 4. Suppose that E is the unramified degree n extension of Qp, given by E = W (Fpn)[ 1p ]. If K is

an untilt of C[, then the following data are equivalent:

• Qp-algebra maps e : E → K.

• Zp-algebra maps W (Fpn)→ OK .

• Fp-algebra maps Fpn → OK /pOK .

• Fp-algebra maps Fpn → O[C /π, where π ∈ C[ satisfies |π|C[ = |p|K .

• Fp-algebra maps Fpn → O[C (since Fp is étale over Fp).

• Fp-algebra maps Fpn → C[.

We therefore obtain a bijection YE ' Y × HomFp(Fpn , C
[); here HomFp(Fpn , C

[ denotes the set of Fp-

algebra maps from Fpn into C[. This has exactly n elements, which are cyclically permuted by the action
of the Frobenius map ϕ[C . It follows that in this case, we have canonical bijections

Closed points of XE ' YE/ϕ
Z

' (Y ×HomFp
(Fpn , C

[)/ϕZ

' Y/ϕnZ.

In the situation of Example 4, the description of the set of closed points of XE has a counterpart at the
level of functions. Let U ⊆ X be a nonempty affine open subset and let UE ⊆ XE be its inverse image in
XE , so that we can write

UE = Spec((B[
1

t
]⊗Qp

E)ϕ=1).

In the case where E is unramified over Qp, this description can be simplified. Note that each embedding of

u : Fpn ↪→ C[ factors through O[C , and therefore induces a map

W (Fpn)→W (O[C) = Ainf → B → B[
1

t
],
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which extends to a Qp-algebra map u : E → B[ 1t ]. Tensoring u with the identity map on B[ 1t ], we obtain a
map

qu : B[
1

t
]⊗Qp

E → B[
1

t
].

Exercise 5. Show that the maps qu induce an isomorphism

B[
1

t
]⊗Qp

E '
∏

u:Fpn ↪→C[

B[
1

t
].

This doesn’t require knowing much about the situation: you can replace B[ 1t ] by any Qp-algebra R which
admits a map E → R.

The Frobenius automorphism of B[ 1t ] extends uniquely to an E-linear automorphism of B[ 1t ] ⊗Qp
E.

Under the isomorphism

B[
1

t
]⊗Qp

E '
∏

u:Fpn ↪→C[

B[
1

t
],

this automorphism cyclically permutes the factors. Concretely, if we identify an element of the right hand side
with an n-tuple (f0, f1, . . . , fn−1) of elements ofB[ 1t ], then we have ϕ(f0, f1, . . . , fn−1) = (ϕ(fn−1), ϕ(f0), ϕ(f1), . . . , ϕ(fn−2)).
It follows that (f1, f2, . . . , fn) is invariant under the Frobenius if and only if we have fi = ϕ(fi−1) for 0 < i < n
and f0 = ϕ(fn−1). The first equation guarantees that fi = ϕi(f0) for 0 < i < n, so that we can rewrite the
second as ϕn(f0) = f0. This proves the following:

Proposition 6. Let E be the unramified degree n extension of Qp and let U ( X be the vanishing locus of

a homogeneous element t ∈
⊕
Bϕ=p

m

. Then we have

UE = Spec(B[
1

t
]ϕ

n=1).

Let us now return to the case where E is any finite extension field of Qp. Let π : XE → X be the
projection map. Note that if E is any vector bundle of rank r on XE , then π∗ E is a vector bundle of rank
nr on X. Moreover, this construction induces an equivalence of categories

{Vector bundles on XE} ' {Vector bundles on X with an action of the field E}.

Every vector bundle E on XE has a well-defined degree, defined by the formula deg(E) = deg(π∗ E). If E is

not zero, we can define the slope slope(E) by the formula slope(E) = deg(E)
rank(E) = 1

n slope(π∗ E).

Proposition 7. Let E be a nonzero vector bundle on XE and let λ be a rational number. The following
conditions are equivalent:

(a) The vector bundle E is semistable of slope λ. That is, slope(E) = λ and, for every nonzero subbundle
E′ ⊆ E, we have slope(E′) ≤ λ.

(b) The direct image π∗ E ∈ Vect(X) is semistable of slope λ
n , in the sense of the previous lecture.

Proof. We have already observed that E has slope λ if and only if π∗ E has slope λ
n . The implication (b)⇒ (a)

is now clear: note that π∗ E is semistable and E′ is a nonzero subbundle of E, then π∗ E
′ is a nonzero subbundle

of π∗ E, and therefore satisfies

deg(E′) = n deg(π∗ E
′) ≤ ndeg(π∗ E) = deg(E).

Conversely, suppose that E is semistable of slope λ.
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Assume that F = π∗ E is not semistable; we will see that this leads to a contradiction. Let

0 = F0 ( F1 ( F2 ( · · · ( Fm = F

be the Harder-Narasimhan filtration of F, with slopes λi = slope(Fi /Fi−1) satisfying λ1 > λ2 > · · · > λm.
Then we must have λ1 > slope(F) = λ

n . Note that, for any nonzero element x ∈ E, multiplication by x
induces an automorphism of F = π∗ E which automatically preserves the Harder-Narasimhan filtration. It
follows that the action of E on F preserves the subbundle F1, so that we can write F1 = π∗ E

′ for some
subbundle E′ ⊆ E. We then have slope(E′) = nλ1 > λ, contradicting the semistability of E.

Proof of Proposition 1. Let λ = d
n be a rational number; we wish to show that there exists a semistable

vector bundle on X having rank n and degree d. Let E be a finite extension of Qp of degree n, and let L

be a line bundle of degree d on XE (for example, we can take L = OXE
(D), where D is a divisor of degree

d on XE). Then L is automatically semistable as a vector bundle on XE (since it has rank 1). Applying
Proposition 7, we see that π∗calL is a semistable vector bundle on X, which evidently has rank n and degree
d.

Our next goal is to better understand the vector bundle produced by our proof of Proposition 1. A priori,
it depends on a few choices: the finite extension E ⊇ Qp, and the choice of line bundle L on XE . But it
turns out that both of these choices are irrelevant. In the second case, this is because of the following:

Theorem 8. Let E be a finite extension of Qp. Then the degree map deg : Pic(XE)→ Z is an isomorphism.

In Lecture 19, we proved Theorem 8 in the special case E = Qp. The point was that for every pair
of closed points x, x′ ∈ X, the divisor x − x′ is linearly equivalent to zero: that is, we can find a rational
function f on X having a simple zero at x and a simple pole at x′. More precisely, we can take

f =
log([ε])

log([ε′])
∈ B[

1

log([ε′])
]ϕ=1,

where ε, ε′ ∈ 1 + m[C are chosen so that the vanishing loci of log([ε]) and log([ε′]) in Y are exactly the
Frobenius orbits corresponding to the points x and x′, respectively. The function f is Frobenius-invariant,
but individually the numerator and denominator are not: they both belong to the eigenspace Bϕ=p. To
prove Theorem 8 in general, we need to do something analogous for the cover XE . We will return to this in
the next lecture.
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