Lecture 21: Covers of the Fargues-Fontaine Curve

November 21, 2018

Throughout this lecture, we fix an algebraically closed perfectoid field C^{\flat} of characteristic p. Let X denote the Fargues-Fontaine curve, given by

$$X = \operatorname{Proj}(\bigoplus_{n \ge 0} B^{\varphi = p^n}).$$

Recall that if \mathcal{E} is a nonzero vector bundle on X, the slope of \mathcal{E} is defined by the formula

$$\operatorname{slope}(\mathcal{E}) = \frac{\operatorname{deg}(\mathcal{E})}{\operatorname{rank}(\mathcal{E})}.$$

We say that \mathcal{E} is *semistable* if every nonzero subbundle $\mathcal{E}' \subseteq \mathcal{E}$ satisfies $slope(\mathcal{E}') \leq slope(\mathcal{E})$. Our first goal in this lecture is to prove the following:

Proposition 1. Let $\lambda = \frac{d}{n}$ be a rational number (where d and n are integers with n > 0). Then there exists a semistable vector bundle \mathcal{E} on X having degree d and rank n (hence slope $\lambda = \frac{d}{n}$).

Remark 2. The vector bundle \mathcal{E} appearing in the statement of Proposition 1 is unique up to isomorphism. We will return to this point in a future lecture.

In the case n = 1, Proposition 1 is trivial. Note that every line bundle \mathcal{L} on X is automatically semistable (since the only nonzero subbundle of \mathcal{L} is \mathcal{L} itself), so Proposition 1 merely asserts that for every integer d, there exists a line bundle of degree d. Here we are exploiting the fact that line bundles on X are easy to make: every divisor $D \subseteq X$ determines a line bundle $\mathcal{O}_X(D)$ on X. To produce vector bundles, we will need to work harder. One possible strategy is to look for a map of schemes

$$\pi: \widetilde{X} \to X$$

which is finite and flat of degree n. In that case, for any line bundle \mathcal{L} on \widetilde{X} , the direct image $\pi_*(\mathcal{L})$ will be a vector bundle of rank n on X. There is an obvious source of examples to consider.

Construction 3. Let *E* be a finite extension of the field \mathbf{Q}_p having degree *n*. We let X_E denote the fiber product $X \times_{\text{Spec}(\mathbf{Q}_p)} \text{Spec}(E)$.

Let us enumerate some easy properties of this construction.

- Since E is a finite extension field of \mathbf{Q}_p , the map $\operatorname{Spec}(E) \to \operatorname{Spec}(\mathbf{Q}_p)$ is finite étale of degree n (in particular, it is finite flat of degree n). It follows that the projection map $\pi : X_E \to X$ is finite étale of degree n. In particular, X_E is also a Dedekind scheme.
- Since the unit map $\mathbf{Q}_p \to \mathrm{H}^0(X, \mathcal{O}_X)$ is an isomorphism, it follows that the unit map $E \to \mathrm{H}^0(X_E, \mathcal{O}_{X_E})$ is also an isomorphism. In particular, $\mathrm{H}^0(X_E, \mathcal{O}_{X_E})$ is a field, so the scheme X_E is connected.

• Let $U \subseteq X$ be a nonempty affine open subset. Then X - U can be given as the vanishing locus of a homogeneous element $t \in \bigoplus_{m \ge 0} B^{\varphi = p^m}$ (which is nonzero of positive degree). In this case, we have seen that U can be described as the spectrum of the ring $B[\frac{1}{t}]^{\varphi=1}$. Setting $U_E = U \times_{\text{Spec}(\mathbf{Q}_p)} E$, it follows that U_E can be described as the spectrum of the ring

$$B[\frac{1}{t}]^{\varphi=1} \otimes_{\mathbf{Q}_p} E \simeq (B[\frac{1}{t}] \otimes_{\mathbf{Q}_p} E)^{\varphi=1}$$

Here we extend the Frobenius automorphism $\varphi: B \to B$ to the tensor product $B \otimes_{\mathbf{Q}_p} E$ by letting it act trivially on the second factor.

- Let $x \in X$ be a closed point corresponding to an until K of C^{\flat} . Then the fiber product $X_E \times_X \{x\}$ can be identified with the spectrum of the tensor product $E \otimes_{\mathbf{Q}_p} K$. Since K is algebraically closed, this tensor product just factors as a Cartesian product of n copies of K. That is, every closed point of X has exactly n points of X_E lying over it, each of which has the same residue field.
- Let Y denote the set of isomorphism classes of characteristic zero untilts (K, ι) of C^{\flat} . Recall that the set of closed points of X can be identified with the quotient $Y/\varphi^{\mathbf{Z}}$. Using the same reasoning, we see that the collection of closed points of the curve X_E can be identified with the quotient $Y_E/\varphi^{\mathbf{Z}}$; here Y_E denotes the set of isomorphism classes of triples (K, ι, u) , where K is a perfection field of characteristic zero, $\iota : C^{\flat} \simeq K^{\flat}$ is an isomorphism, and $u : E \to K$ is a map of \mathbf{Q}_p -algebras (note in this situation, K is an algebraically closed extension field of \mathbf{Q}_p , so there are exactly n choices for the embedding u).

Example 4. Suppose that *E* is the unramified degree *n* extension of \mathbf{Q}_p , given by $E = W(\mathbf{F}_{p^n})[\frac{1}{p}]$. If *K* is an until of C^{\flat} , then the following data are equivalent:

- \mathbf{Q}_p -algebra maps $e: E \to K$.
- \mathbf{Z}_p -algebra maps $W(\mathbf{F}_{p^n}) \to \mathcal{O}_K$.
- \mathbf{F}_p -algebra maps $\mathbf{F}_{p^n} \to \mathcal{O}_K / p \mathcal{O}_K$.
- \mathbf{F}_p -algebra maps $\mathbf{F}_{p^n} \to \mathcal{O}_C^{\flat}/\pi$, where $\pi \in C^{\flat}$ satisfies $|\pi|_{C^{\flat}} = |p|_K$.
- \mathbf{F}_p -algebra maps $\mathbf{F}_{p^n} \to \mathcal{O}_C^{\flat}$ (since \mathbf{F}_p is étale over \mathbf{F}_p).
- \mathbf{F}_p -algebra maps $\mathbf{F}_{p^n} \to C^{\flat}$.

We therefore obtain a bijection $Y_E \simeq Y \times \operatorname{Hom}_{\mathbf{F}_p}(\mathbf{F}_{p^n}, C^{\flat})$; here $\operatorname{Hom}_{\mathbf{F}_p}(\mathbf{F}_{p^n}, C^{\flat})$ denotes the set of \mathbf{F}_p algebra maps from \mathbf{F}_{p^n} into C^{\flat} . This has exactly *n* elements, which are cyclically permuted by the action of the Frobenius map φ_C^{\flat} . It follows that in this case, we have canonical bijections

Closed points of
$$X_E \simeq Y_E / \varphi^{\mathbf{Z}}$$

 $\simeq (Y \times \operatorname{Hom}_{\mathbf{F}_p}(\mathbf{F}_{p^n}, C^{\flat}) / \varphi^{\mathbf{Z}}$
 $\simeq Y / \varphi^{n\mathbf{Z}}.$

In the situation of Example 4, the description of the set of closed points of X_E has a counterpart at the level of functions. Let $U \subseteq X$ be a nonempty affine open subset and let $U_E \subseteq X_E$ be its inverse image in X_E , so that we can write

$$U_E = \operatorname{Spec}((B[\frac{1}{t}] \otimes_{\mathbf{Q}_p} E)^{\varphi=1}).$$

In the case where E is unramified over \mathbf{Q}_p , this description can be simplified. Note that each embedding of $u: \mathbf{F}_{p^n} \hookrightarrow C^{\flat}$ factors through \mathcal{O}_C^{\flat} , and therefore induces a map

$$W(\mathbf{F}_{p^n}) \to W(\mathcal{O}_C^{\flat}) = \mathbf{A}_{\inf} \to B \to B[\frac{1}{t}],$$

which extends to a \mathbf{Q}_p -algebra map $\overline{u}: E \to B[\frac{1}{t}]$. Tensoring \overline{u} with the identity map on $B[\frac{1}{t}]$, we obtain a map

$$q_u: B[\frac{1}{t}] \otimes_{\mathbf{Q}_p} E \to B[\frac{1}{t}].$$

Exercise 5. Show that the maps q_u induce an isomorphism

$$B[\frac{1}{t}] \otimes_{\mathbf{Q}_p} E \simeq \prod_{u: \mathbf{F}_{p^n} \hookrightarrow C^\flat} B[\frac{1}{t}].$$

This doesn't require knowing much about the situation: you can replace $B[\frac{1}{t}]$ by any \mathbf{Q}_p -algebra R which admits a map $E \to R$.

The Frobenius automorphism of $B[\frac{1}{t}]$ extends uniquely to an *E*-linear automorphism of $B[\frac{1}{t}] \otimes_{\mathbf{Q}_p} E$. Under the isomorphism

$$B[\frac{1}{t}] \otimes_{\mathbf{Q}_p} E \simeq \prod_{u: \mathbf{F}_{p^n} \hookrightarrow C^\flat} B[\frac{1}{t}]$$

this automorphism cyclically permutes the factors. Concretely, if we identify an element of the right hand side with an n-tuple $(f_0, f_1, \ldots, f_{n-1})$ of elements of $B[\frac{1}{t}]$, then we have $\varphi(f_0, f_1, \ldots, f_{n-1}) = (\varphi(f_{n-1}), \varphi(f_0), \varphi(f_1), \ldots, \varphi(f_{n-2}))$. It follows that (f_1, f_2, \ldots, f_n) is invariant under the Frobenius if and only if we have $f_i = \varphi(f_{i-1})$ for 0 < i < nand $f_0 = \varphi(f_{n-1})$. The first equation guarantees that $f_i = \varphi^i(f_0)$ for 0 < i < n, so that we can rewrite the second as $\varphi^n(f_0) = f_0$. This proves the following:

Proposition 6. Let E be the unramified degree n extension of \mathbf{Q}_p and let $U \subsetneq X$ be the vanishing locus of a homogeneous element $t \in \bigoplus B^{\varphi = p^m}$. Then we have

$$U_E = \operatorname{Spec}(B[\frac{1}{t}]^{\varphi^n = 1}).$$

Let us now return to the case where E is any finite extension field of \mathbf{Q}_p . Let $\pi : X_E \to X$ be the projection map. Note that if \mathcal{E} is any vector bundle of rank r on X_E , then $\pi_* \mathcal{E}$ is a vector bundle of rank nr on X. Moreover, this construction induces an equivalence of categories

{Vector bundles on X_E } \simeq {Vector bundles on X with an action of the field E}.

Every vector bundle \mathcal{E} on X_E has a well-defined degree, defined by the formula $\deg(\mathcal{E}) = \deg(\pi_* \mathcal{E})$. If \mathcal{E} is not zero, we can define the slope slope(\mathcal{E}) by the formula slope(\mathcal{E}) = $\frac{\deg(\mathcal{E})}{\operatorname{rank}(\mathcal{E})} = \frac{1}{n}\operatorname{slope}(\pi_* \mathcal{E})$.

Proposition 7. Let \mathcal{E} be a nonzero vector bundle on X_E and let λ be a rational number. The following conditions are equivalent:

- (a) The vector bundle \mathcal{E} is semistable of slope λ . That is, $\operatorname{slope}(\mathcal{E}) = \lambda$ and, for every nonzero subbundle $\mathcal{E}' \subseteq \mathcal{E}$, we have $\operatorname{slope}(\mathcal{E}') \leq \lambda$.
- (b) The direct image $\pi_* \mathcal{E} \in \operatorname{Vect}(X)$ is semistable of slope $\frac{\lambda}{n}$, in the sense of the previous lecture.

Proof. We have already observed that \mathcal{E} has slope λ if and only if $\pi_* \mathcal{E}$ has slope $\frac{\lambda}{n}$. The implication $(b) \Rightarrow (a)$ is now clear: note that $\pi_* \mathcal{E}$ is semistable and \mathcal{E}' is a nonzero subbundle of \mathcal{E} , then $\pi_* \mathcal{E}'$ is a nonzero subbundle of $\pi_* \mathcal{E}$, and therefore satisfies

$$\deg(\mathcal{E}') = n \deg(\pi_* \mathcal{E}') \le n \deg(\pi_* \mathcal{E}) = \deg(\mathcal{E}).$$

Conversely, suppose that \mathcal{E} is semistable of slope λ .

Assume that $\mathcal{F} = \pi_* \mathcal{E}$ is not semistable; we will see that this leads to a contradiction. Let

$$0 = \mathcal{F}_0 \subsetneq \mathcal{F}_1 \subsetneq \mathcal{F}_2 \subsetneq \cdots \subsetneq \mathcal{F}_m = \mathcal{F}$$

be the Harder-Narasimhan filtration of \mathcal{F} , with slopes $\lambda_i = \operatorname{slope}(\mathcal{F}_i / \mathcal{F}_{i-1})$ satisfying $\lambda_1 > \lambda_2 > \cdots > \lambda_m$. Then we must have $\lambda_1 > \operatorname{slope}(\mathcal{F}) = \frac{\lambda}{n}$. Note that, for any nonzero element $x \in E$, multiplication by x induces an automorphism of $\mathcal{F} = \pi_* \mathcal{E}$ which automatically preserves the Harder-Narasimhan filtration. It follows that the action of E on \mathcal{F} preserves the subbundle \mathcal{F}_1 , so that we can write $\mathcal{F}_1 = \pi_* \mathcal{E}'$ for some subbundle $\mathcal{E}' \subseteq \mathcal{E}$. We then have $\operatorname{slope}(\mathcal{E}') = n\lambda_1 > \lambda$, contradicting the semistability of \mathcal{E} .

Proof of Proposition 1. Let $\lambda = \frac{d}{n}$ be a rational number; we wish to show that there exists a semistable vector bundle on X having rank n and degree d. Let E be a finite extension of \mathbf{Q}_p of degree n, and let \mathcal{L} be a line bundle of degree d on X_E (for example, we can take $\mathcal{L} = \mathcal{O}_{X_E}(D)$, where D is a divisor of degree d on X_E). Then \mathcal{L} is automatically semistable as a vector bundle on X_E (since it has rank 1). Applying Proposition 7, we see that $\pi_* calL$ is a semistable vector bundle on X, which evidently has rank n and degree d.

Our next goal is to better understand the vector bundle produced by our proof of Proposition 1. A priori, it depends on a few choices: the finite extension $E \supseteq \mathbf{Q}_p$, and the choice of line bundle \mathcal{L} on X_E . But it turns out that both of these choices are irrelevant. In the second case, this is because of the following:

Theorem 8. Let E be a finite extension of \mathbf{Q}_p . Then the degree map deg : $\operatorname{Pic}(X_E) \to \mathbf{Z}$ is an isomorphism.

In Lecture 19, we proved Theorem 8 in the special case $E = \mathbf{Q}_p$. The point was that for every pair of closed points $x, x' \in X$, the divisor x - x' is linearly equivalent to zero: that is, we can find a rational function f on X having a simple zero at x and a simple pole at x'. More precisely, we can take

$$f = \frac{\log([\epsilon])}{\log([\epsilon'])} \in B[\frac{1}{\log([\epsilon'])}]^{\varphi=1},$$

where $\epsilon, \epsilon' \in 1 + \mathfrak{m}_C^{\flat}$ are chosen so that the vanishing loci of $\log([\epsilon])$ and $\log([\epsilon'])$ in Y are exactly the Frobenius orbits corresponding to the points x and x', respectively. The function f is Frobenius-invariant, but individually the numerator and denominator are not: they both belong to the eigenspace $B^{\varphi=p}$. To prove Theorem 8 in general, we need to do something analogous for the cover X_E . We will return to this in the next lecture.