Lecture 21: Covers of the Fargues-Fontaine Curve

November 21, 2018

Throughout this lecture, we fix an algebraically closed perfectoid field C^{b} of characteristic p. Let X denote the Fargues-Fontaine curve, given by

$$
X=\operatorname{Proj}\left(\bigoplus_{n \geq 0} B^{\varphi=p^{n}}\right)
$$

Recall that if \mathcal{E} is a nonzero vector bundle on X, the slope of \mathcal{E} is defined by the formula

$$
\operatorname{slope}(\mathcal{E})=\frac{\operatorname{deg}(\mathcal{E})}{\operatorname{rank}(\mathcal{E})} .
$$

We say that \mathcal{E} is semistable if every nonzero subbundle $\mathcal{E}^{\prime} \subseteq \mathcal{E}$ satisfies slope $\left(\mathcal{E}^{\prime}\right) \leq \operatorname{slope}(\mathcal{E})$. Our first goal in this lecture is to prove the following:
Proposition 1. Let $\lambda=\frac{d}{n}$ be a rational number (where d and n are integers with $n>0$). Then there exists a semistable vector bundle \mathcal{E} on X having degree d and rank n (hence slope $\lambda=\frac{d}{n}$).
Remark 2. The vector bundle \mathcal{E} appearing in the statement of Proposition 1 is unique up to isomorphism. We will return to this point in a future lecture.

In the case $n=1$, Proposition 1 is trivial. Note that every line bundle \mathcal{L} on X is automatically semistable (since the only nonzero subbundle of \mathcal{L} is \mathcal{L} itself), so Proposition 1 merely asserts that for every integer d, there exists a line bundle of degree d. Here we are exploiting the fact that line bundles on X are easy to make: every divisor $D \subseteq X$ determines a line bundle $\mathcal{O}_{X}(D)$ on X. To produce vector bundles, we will need to work harder. One possible strategy is to look for a map of schemes

$$
\pi: \widetilde{X} \rightarrow X
$$

which is finite and flat of degree n. In that case, for any line bundle \mathcal{L} on \widetilde{X}, the direct image $\pi_{*}(\mathcal{L})$ will be a vector bundle of rank n on X. There is an obvious source of examples to consider.

Construction 3. Let E be a finite extension of the field \mathbf{Q}_{p} having degree n. We let X_{E} denote the fiber product $X \times_{\text {Spec }\left(\mathbf{Q}_{p}\right)} \operatorname{Spec}(E)$.

Let us enumerate some easy properties of this construction.

- Since E is a finite extension field of \mathbf{Q}_{p}, the map $\operatorname{Spec}(E) \rightarrow \operatorname{Spec}\left(\mathbf{Q}_{p}\right)$ is finite étale of degree n (in particular, it is finite flat of degree n). It follows that the projection map $\pi: X_{E} \rightarrow X$ is finite étale of degree n. In particular, X_{E} is also a Dedekind scheme.
- Since the unit map $\mathbf{Q}_{p} \rightarrow \mathrm{H}^{0}\left(X, \mathcal{O}_{X}\right)$ is an isomorphism, it follows that the unit map $E \rightarrow \mathrm{H}^{0}\left(X_{E}, \mathcal{O}_{X_{E}}\right)$ is also an isomorphism. In particular, $\mathrm{H}^{0}\left(X_{E}, \mathcal{O}_{X_{E}}\right)$ is a field, so the scheme X_{E} is connected.
- Let $U \subseteq X$ be a nonempty affine open subset. Then $X-U$ can be given as the vanishing locus of a homogeneous element $t \in \bigoplus_{m \geq 0} B^{\varphi=p^{m}}$ (which is nonzero of positive degree). In this case, we have seen that U can be described as the spectrum of the ring $B\left[\frac{1}{t}\right]^{\varphi=1}$. Setting $U_{E}=U \times_{\operatorname{Spec}\left(\mathbf{Q}_{p}\right)} E$, it follows that U_{E} can be described as the spectrum of the ring

$$
B\left[\frac{1}{t}\right]^{\varphi=1} \otimes_{\mathbf{Q}_{p}} E \simeq\left(B\left[\frac{1}{t}\right] \otimes_{\mathbf{Q}_{p}} E\right)^{\varphi=1} .
$$

Here we extend the Frobenius automorphism $\varphi: B \rightarrow B$ to the tensor product $B \otimes_{\mathbf{Q}_{p}} E$ by letting it act trivially on the second factor.

- Let $x \in X$ be a closed point corresponding to an untilt K of C^{b}. Then the fiber product $X_{E} \times_{X}\{x\}$ can be identified with the spectrum of the tensor product $E \otimes \mathbf{Q}_{p} K$. Since K is algebraically closed, this tensor product just factors as a Cartesian product of n copies of K. That is, every closed point of X has exactly n points of X_{E} lying over it, each of which has the same residue field.
- Let Y denote the set of isomorphism classes of characteristic zero untilts (K, ι) of C^{b}. Recall that the set of closed points of X can be identified with the quotient $Y / \varphi^{\mathbf{Z}}$. Using the same reasoning, we see that the collection of closed points of the curve X_{E} can be identified with the quotient $Y_{E} / \varphi^{\mathbf{z}}$; here Y_{E} denotes the set of isomorphism classes of triples ($K, \iota, u)$, where K is a perfectoid field of characteristic zero, $\iota: C^{b} \simeq K^{b}$ is an isomorphism, and $u: E \rightarrow K$ is a map of \mathbf{Q}_{p}-algebras (note in this situation, K is an algebraically closed extension field of \mathbf{Q}_{p}, so there are exactly n choices for the embedding u).

Example 4. Suppose that E is the unramified degree n extension of \mathbf{Q}_{p}, given by $E=W\left(\mathbf{F}_{p^{n}}\right)\left[\frac{1}{p}\right]$. If K is an untilt of C^{b}, then the following data are equivalent:

- \mathbf{Q}_{p}-algebra maps $e: E \rightarrow K$.
- \mathbf{Z}_{p}-algebra maps $W\left(\mathbf{F}_{p^{n}}\right) \rightarrow \mathcal{O}_{K}$.

- $\mathbf{F}_{p^{-}}$-algebra maps $\mathbf{F}_{p^{n}} \rightarrow \mathcal{O}_{C}^{b} / \pi$, where $\pi \in C^{b}$ satisfies $|\pi|_{C^{b}}=|p|_{K}$.

We therefore obtain a bijection $Y_{E} \simeq Y \times \operatorname{Hom}_{\mathbf{F}_{p}}\left(\mathbf{F}_{p^{n}}, C^{b}\right)$; here $\operatorname{Hom}_{\mathbf{F}_{p}}\left(\mathbf{F}_{p^{n}}, C^{b}\right.$ denotes the set of $\mathbf{F}_{p^{-}}$ algebra maps from $\mathbf{F}_{p^{n}}$ into C^{b}. This has exactly n elements, which are cyclically permuted by the action of the Frobenius map φ_{C}^{b}. It follows that in this case, we have canonical bijections

$$
\begin{aligned}
\text { Closed points of } X_{E} & \simeq Y_{E} / \varphi^{\mathbf{Z}} \\
& \simeq\left(Y \times \operatorname{Hom}_{\mathbf{F}_{p}}\left(\mathbf{F}_{p^{n}}, C^{b}\right) / \varphi^{\mathbf{Z}}\right. \\
& \simeq Y / \varphi^{n \mathbf{Z}}
\end{aligned}
$$

In the situation of Example 4, the description of the set of closed points of X_{E} has a counterpart at the level of functions. Let $U \subseteq X$ be a nonempty affine open subset and let $U_{E} \subseteq X_{E}$ be its inverse image in X_{E}, so that we can write

$$
U_{E}=\operatorname{Spec}\left(\left(B\left[\frac{1}{t}\right] \otimes_{\mathbf{Q}_{p}} E\right)^{\varphi=1}\right) .
$$

In the case where E is unramified over \mathbf{Q}_{p}, this description can be simplified. Note that each embedding of $u: \mathbf{F}_{p^{n}} \hookrightarrow C^{b}$ factors through \mathcal{O}_{C}^{b}, and therefore induces a map

$$
W\left(\mathbf{F}_{p^{n}}\right) \rightarrow W\left(\mathcal{O}_{C}^{b}\right)=\mathbf{A}_{\mathrm{inf}} \rightarrow B \rightarrow B\left[\frac{1}{t}\right],
$$

which extends to a \mathbf{Q}_{p}-algebra map $\bar{u}: E \rightarrow B\left[\frac{1}{t}\right]$. Tensoring \bar{u} with the identity map on $B\left[\frac{1}{t}\right]$, we obtain a map

$$
q_{u}: B\left[\frac{1}{t}\right] \otimes_{\mathbf{Q}_{p}} E \rightarrow B\left[\frac{1}{t}\right] .
$$

Exercise 5. Show that the maps q_{u} induce an isomorphism

$$
B\left[\frac{1}{t}\right] \otimes_{\mathbf{Q}_{p}} E \simeq \prod_{u: \mathbf{F}_{p^{n}} \hookrightarrow C^{b}} B\left[\frac{1}{t}\right]
$$

This doesn't require knowing much about the situation: you can replace $B\left[\frac{1}{t}\right]$ by any \mathbf{Q}_{p}-algebra R which admits a map $E \rightarrow R$.

The Frobenius automorphism of $B\left[\frac{1}{t}\right]$ extends uniquely to an E-linear automorphism of $B\left[\frac{1}{t}\right] \otimes \mathbf{Q}_{p} E$. Under the isomorphism

$$
B\left[\frac{1}{t}\right] \otimes_{\mathbf{Q}_{p}} E \simeq \prod_{u: \mathbf{F}_{p^{n}} \hookrightarrow C^{b}} B\left[\frac{1}{t}\right]
$$

this automorphism cyclically permutes the factors. Concretely, if we identify an element of the right hand side with an n-tuple $\left(f_{0}, f_{1}, \ldots, f_{n-1}\right)$ of elements of $B\left[\frac{1}{t}\right]$, then we have $\varphi\left(f_{0}, f_{1}, \ldots, f_{n-1}\right)=\left(\varphi\left(f_{n-1}\right), \varphi\left(f_{0}\right), \varphi\left(f_{1}\right), \ldots, \varphi\left(f_{n-2}\right)\right)$. It follows that $\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ is invariant under the Frobenius if and only if we have $f_{i}=\varphi\left(f_{i-1}\right)$ for $0<i<n$ and $f_{0}=\varphi\left(f_{n-1}\right)$. The first equation guarantees that $f_{i}=\varphi^{i}\left(f_{0}\right)$ for $0<i<n$, so that we can rewrite the second as $\varphi^{n}\left(f_{0}\right)=f_{0}$. This proves the following:

Proposition 6. Let E be the unramified degree n extension of \mathbf{Q}_{p} and let $U \subsetneq X$ be the vanishing locus of a homogeneous element $t \in \bigoplus B^{\varphi=p^{m}}$. Then we have

$$
U_{E}=\operatorname{Spec}\left(B\left[\frac{1}{t}\right]^{\varphi^{n}=1}\right)
$$

Let us now return to the case where E is any finite extension field of \mathbf{Q}_{p}. Let $\pi: X_{E} \rightarrow X$ be the projection map. Note that if \mathcal{E} is any vector bundle of rank r on X_{E}, then $\pi_{*} \mathcal{E}$ is a vector bundle of rank $n r$ on X. Moreover, this construction induces an equivalence of categories
$\left\{\right.$ Vector bundles on $\left.X_{E}\right\} \simeq\{$ Vector bundles on X with an action of the field $E\}$.
Every vector bundle \mathcal{E} on X_{E} has a well-defined degree, defined by the formula $\operatorname{deg}(\mathcal{E})=\operatorname{deg}\left(\pi_{*} \mathcal{E}\right)$. If \mathcal{E} is not zero, we can define the slope slope (\mathcal{E}) by the formula $\operatorname{slope}(\mathcal{E})=\frac{\operatorname{deg}(\mathcal{E})}{\operatorname{rank}(\mathcal{E})}=\frac{1}{n} \operatorname{slope}\left(\pi_{*} \mathcal{E}\right)$.
Proposition 7. Let \mathcal{E} be a nonzero vector bundle on X_{E} and let λ be a rational number. The following conditions are equivalent:
(a) The vector bundle \mathcal{E} is semistable of slope λ. That is, slope $(\mathcal{E})=\lambda$ and, for every nonzero subbundle $\mathcal{E}^{\prime} \subseteq \mathcal{E}$, we have slope $\left(\mathcal{E}^{\prime}\right) \leq \lambda$.
(b) The direct image $\pi_{*} \mathcal{E} \in \operatorname{Vect}(X)$ is semistable of slope $\frac{\lambda}{n}$, in the sense of the previous lecture.

Proof. We have already observed that \mathcal{E} has slope λ if and only if $\pi_{*} \mathcal{E}$ has slope $\frac{\lambda}{n}$. The implication $(b) \Rightarrow(a)$ is now clear: note that $\pi_{*} \mathcal{E}$ is semistable and \mathcal{E}^{\prime} is a nonzero subbundle of \mathcal{E}, then $\pi_{*} \mathcal{E}^{\prime}$ is a nonzero subbundle of $\pi_{*} \mathcal{E}$, and therefore satisfies

$$
\operatorname{deg}\left(\mathcal{E}^{\prime}\right)=n \operatorname{deg}\left(\pi_{*} \mathcal{E}^{\prime}\right) \leq n \operatorname{deg}\left(\pi_{*} \mathcal{E}\right)=\operatorname{deg}(\mathcal{E})
$$

Conversely, suppose that \mathcal{E} is semistable of slope λ.

Assume that $\mathcal{F}=\pi_{*} \mathcal{E}$ is not semistable; we will see that this leads to a contradiction. Let

$$
0=\mathcal{F}_{0} \subsetneq \mathcal{F}_{1} \subsetneq \mathcal{F}_{2} \subsetneq \cdots \subsetneq \mathcal{F}_{m}=\mathcal{F}
$$

be the Harder-Narasimhan filtration of \mathcal{F}, with slopes $\lambda_{i}=\operatorname{slope}\left(\mathcal{F}_{i} / \mathcal{F}_{i-1}\right)$ satisfying $\lambda_{1}>\lambda_{2}>\cdots>\lambda_{m}$. Then we must have $\lambda_{1}>\operatorname{slope}(\mathcal{F})=\frac{\lambda}{n}$. Note that, for any nonzero element $x \in E$, multiplication by x induces an automorphism of $\mathcal{F}=\pi_{*} \mathcal{E}$ which automatically preserves the Harder-Narasimhan filtration. It follows that the action of E on \mathcal{F} preserves the subbundle \mathcal{F}_{1}, so that we can write $\mathcal{F}_{1}=\pi_{*} \mathcal{E}^{\prime}$ for some subbundle $\mathcal{E}^{\prime} \subseteq \mathcal{E}$. We then have slope $\left(\mathcal{E}^{\prime}\right)=n \lambda_{1}>\lambda$, contradicting the semistability of \mathcal{E}.

Proof of Proposition 1. Let $\lambda=\frac{d}{n}$ be a rational number; we wish to show that there exists a semistable vector bundle on X having rank n and degree d. Let E be a finite extension of \mathbf{Q}_{p} of degree n, and let \mathcal{L} be a line bundle of degree d on X_{E} (for example, we can take $\mathcal{L}=\mathcal{O}_{X_{E}}(D)$, where D is a divisor of degree d on X_{E}). Then \mathcal{L} is automatically semistable as a vector bundle on X_{E} (since it has rank 1). Applying Proposition 7 , we see that π_{*} calL is a semistable vector bundle on X, which evidently has rank n and degree d.

Our next goal is to better understand the vector bundle produced by our proof of Proposition 1. A priori, it depends on a few choices: the finite extension $E \supseteq \mathbf{Q}_{p}$, and the choice of line bundle \mathcal{L} on X_{E}. But it turns out that both of these choices are irrelevant. In the second case, this is because of the following:

Theorem 8. Let E be a finite extension of \mathbf{Q}_{p}. Then the degree map deg : $\operatorname{Pic}\left(X_{E}\right) \rightarrow \mathbf{Z}$ is an isomorphism.
In Lecture 19, we proved Theorem 8 in the special case $E=\mathbf{Q}_{p}$. The point was that for every pair of closed points $x, x^{\prime} \in X$, the divisor $x-x^{\prime}$ is linearly equivalent to zero: that is, we can find a rational function f on X having a simple zero at x and a simple pole at x^{\prime}. More precisely, we can take

$$
f=\frac{\log ([\epsilon])}{\log \left(\left[\epsilon^{\prime}\right]\right)} \in B\left[\frac{1}{\log \left(\left[\epsilon^{\prime}\right]\right)}\right]^{\varphi=1}
$$

where $\epsilon, \epsilon^{\prime} \in 1+\mathfrak{m}_{C}^{b}$ are chosen so that the vanishing loci of $\log ([\epsilon])$ and $\log \left(\left[\epsilon^{\prime}\right]\right)$ in Y are exactly the Frobenius orbits corresponding to the points x and x^{\prime}, respectively. The function f is Frobenius-invariant, but individually the numerator and denominator are not: they both belong to the eigenspace $B^{\varphi=p}$. To prove Theorem 8 in general, we need to do something analogous for the cover X_{E}. We will return to this in the next lecture.

