
Lecture 20: The Harder-Narasimhan Filtration

November 19, 2018

Throughout this lecture, we fix an algebraically closed perfectoid field C[ of characteristic p. Let X
denote the Fargues-Fontaine curve, given by

X = Proj(
⊕
n≥0

Bϕ=p
n

).

Our goal in this lecture is to show that every vector bundle E on X admits a canonical Harder-Narasimhan
filtration (just as if X were an algebraic curve defined over a field).

We begin with some generalities. Recall that, if E is a nonzero vector bundle on X, the slope slope(E) is
defined by the formula

slope(E) =
deg(E)

rank(E)
.

Exercise 1. Let 0→ E′ → E→ E′′ → 0 be a short exact sequence of nonzero vector bundles on X, so that
we have equalities

deg(E) = deg(E′) + deg(E′′) rank(E) = rank(E′) + rank(E′′).

Using this, show that:

• If slope(E′) = slope(E′′), then slope(E′) = slope(E) = slope(E′′).

• If slope(E′) < slope(E′′), then slope(E′) < slope(E) < slope(E′′).

• If slope(E′) > slope(E), then slope(E′) > slope(E) > slope(E′′).

Remark 2. Let E be a vector bundle on X and let E′ ( E be a subsheaf which is a vector bundle of the same
rank (so that the quotient E′′ = E /E′ is a coherent sheaf with finite support on X). Then deg(E′) < deg(E)
and therefore slope(E′) < slope(E). To prove this, we can replace E and E′ by their top exterior powers
and thereby reduce to the case where E and E′ are line bundles, in which case the result is obvious (since
there are no nonzero maps from O(m) to O(n) for m > n, and every nonzero map from O(n) to itself is an
isomorphism). Note that this can be regarded as a degenerate version of Exercise 1, where we adopt the
convention that slope(E′′) =∞.

Definition 3. Let E be a nonzero vector bundle on X and let λ be a rational number. We say that E is
semistable of slope λ if slope(E) = λ and, for every nonzero subbundle E′ ⊆ E, we have slope(E′) ≤ λ. By
convention, we say that the zero vector bundle is semistable of every slope.

Remark 4. Let E be a vector bundle on X which is semistable of slope λ and let E′ ⊆ E be a coherent
subsheaf. Then E′ is also a vector bundle, but not necessarily a vector subbundle (since the quotient E /E′

might not be a vector bundle). However, E′ is always contained in a vector subbundle E
′ ⊆ E of the same

rank. Using Remark 2 we obtain

slope(E′) ≤ slope(E
′
) ≤ λ.

Moreover, the first inequality is strict if E′ is not a subbundle of E.
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Proposition 5. Let E be a vector bundle on X which is semistable of rank λ. For any surjection of vector
bundles E � E′′, we have slope(E′′) ≥ λ.

Proof. We have an exact sequence 0 → E′ → E → E′′ → 0, and the semistability of E gives slope(E′) ≤
slope(E) = λ. Applying Exercise 1, we see that slope(E′′) ≥ λ.

Corollary 6. Let E and F be semistable vector bundles of slopes λ and µ. If λ > µ, then every map of
vector bundles f : E→ F vanishes.

Proof. If f 6= 0, then the image Im(f) is a nonzero coherent subsheaf of F, hence a vector bundle of rank
> 0. Remark 4 and Proposition 5 then give

λ = slope(E) ≤ slope(Im(f)) ≤ slope(F) = µ,

contradicting our assumption that λ > µ.

Proposition 7. Let f : E → F be a map of vector bundles on E which are semistable of slope λ. Then
ker(f) and coker(f) (formed in the category of coherent sheaf on X) are vector bundles.

Proof. If f = 0, there is nothing to prove. Otherwise, we again have inequalities

λ = slope(E) ≤ slope(Im(f)) ≤ slope(F) = λ.

It follows that equality must hold in both cases, so that Im(f) has slope λ. Moreover, Remark 4 shows that
it is a vector subbundle of F, so that coker(f) is a vector bundle on X and we have exact sequences

0→ ker(f)→ E→ Im(f)→ 0

0→ Im(f)→ F → coker(f)→ 0.

Applying Exercise 1, we conclude that ker(f) and coker(f) (if nonzero) also have slope λ. Every subbundle
of ker(f) can also be regarded as a subbundle of E, and therefore has slope ≤ λ by virtue of our assumption
that E is semistable. This proves the ker(f) is semistable of slope λ. We claim that coker(f) is also semistable

of slope λ. Assume otherwise: then there exists a subbundle F
′ ⊆ coker(f) of slope > λ. Let F′ be the

inverse image of F
′

in F, so that we have an exact sequence

0→ Im(f)→ F′ → F
′ → 0.

Applying Exercise 1, we deduce that slope(F′) > λ, contradicting the semistability of F.

Proposition 8. Let 0→ E′ → E→ E′′ → 0 be an exact sequence of vector bundles on X. If E′ and E′′ are
semistable of slope λ, then so is E.

Proof. Exercise 1 shows that E has slope λ. Let F ⊆ E be any vector subbundle. Let F′ = F∩E′ and let F′′

be the image of F in E′′. Then F′ and F′′ are vector bundles which can be regarded as subsheaves of E′ and
E′′, respectively, so Remark 4 implies that slope(F′), slope(F′′) ≤ λ. Using the exact sequence

0→ F′ → F → F′′ → 0,

we deduce that slope(F) ≤ λ.

Corollary 9. Let Coh(X) denote the category of coherent sheaves on X and let Vectλ(X) ⊆ Coh(X) denote
the full subcategory whose objects are vector bundles on X which are semistable of slope 0. Then Vectλ(X)
is closed under kernels, cokernels, and extensions in Coh(X). In particular, it is an abelian category.
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Warning 10. The collection of all vector bundles on X does not form an abelian category (note that if
f : E → F is a map of vector bundles, then in general the cokernel coker(f) in the category of coherent
sheaves is not a vector bundle).

Definition 11. Let E be a vector bundle on X. We say that a filtration

0 = E0 ( E1 ⊆ E2 ( · · · ⊆ Em = E

is a Harder-Narasimhan filtration if the following conditions are satisfied:

• Each of the quotient vector bundles Ei /Ei−1 is semistable of some slope λi.

• The slopes λi are strictly decreasing: that is, we have λ1 > λ2 > · · · > λm.

Theorem 12. Let E be a vector bundle on X. Then E has a unique Harder-Narasimhan filtration.

Let us first establish uniqueness. We will proceed by induction on the rank r of E. Suppose that E is
equipped with two Harder-Narasimhan filtrations

0 = E0 ( E1 ⊆ E2 ( · · · ⊆ Em = E

0 = E′0 ( E′1 ⊆ E′2 ( · · · ⊆ E′n = E .

where the successive quotients have slopes λ1 > · · · > λm and λ′1 > · · · > λ′n, respectively. We wish to
show that these filtrations are the same. We will show that E1 = E′1; the desired result will then follow by
applying the inductive hypothesis to the filtrations

0 = E1 /E1 ⊆ E2 /E1 ( · · · ⊆ Em /E1 = E /E1

0 = E′1 /E
′
1 ⊆ E′2 /E

′
1 ( · · · ⊆ E′n /E

′
1 = E /E′1 .

We first claim that λ1 = λ′1. Suppose otherwise. Then we may assume without loss of generality that
λ1 > λ′1. It follows that λ1 > λ′i for 1 ≤ i ≤ n. Applying Corollary 6, we conclude that Hom(E1,E

′
i /E

′
i−1) =

0. Since E admits a finite filtration whose successive quotients are E′i /E
′
i−1, it follows that Hom(E1,E) = 0.

This is a contradiction, since the inclusion map E1 ↪→ E is a nonzero element of Hom(E1,E).

The equality λ1 = λ′1 guarantees that we have a strict inequality λ1 > λ′i for i > 1. As above, we conclude
that Hom(E1,E

′
i /E

′
i−1) = 0. Since the quotient bundle E /E′1 admits a finite filtration whose successive

quotients have the form E′i /E
′
i−1 with i > 1, it follows that Hom(E1,E /E

′
1) vanishes. In particular, the

composite map
E1 ↪→ E � E /E′1

must be zero, so we must have E1 ⊆ E′1. Applying the same argument with the roles of E1 and E′1 reversed,
we deduce that E′1 ⊆ E1. We therefore have equality E1 = E′1, which (together with our inductive hypothesis)
proves the uniqueness part of Theorem 12. To prove existence, we need the following:

Lemma 13. Let E be a vector bundle on X. Then there exists an integer N(E) with the following property:
for every coherent subsheaf F ⊆ E, we have deg(F) ≤ N(E).

Proof. We proceed by induction on the rank of E. Note that if E is a line bundle, then every subsheaf F ⊆ E

is either a line bundle of smaller degree or zero; we can therefore take N(E) = max(deg(E), 0). To handle
the general case, we observe that if E has rank > 1 then we can choose an exact sequence of vector bundles

0→ E′ → E→ E′′ → 0,
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where E′ and E′′ have smaller rank (for example, we can take E′ to be the line subbundle of E determined
by any rational section of E). If F is a coherent subsheaf of E, then F fits into an exact sequence

0→ F′ → F → F′′ → 0

where F′ = F∩E′ and F′′ is a subsheaf of E′′. We then have

deg(F) = deg(F′) + deg(F′′) ≤ N(E′) +N(E′′),

so setting N(E) = N(E′) +N(E′′) satisfies the requirements of Lemma 13.

Proof of Theorem 12. Let E be a vector bundle on X; we wish to show that E admits a Harder-Narasimhan
filtration. We proceed by induction on the rank rank(E). Let S be the collection of all rational numbers of
the form slope(E′), where E′ ⊆ E is a nonzero subbundle. It follows from Lemma 13 that S has a largest
element. Let λ denote the largest element of S. Then there exists a nonzero subbundle E′ ⊆ E of slope λ.
Choose such a subbundle whose rank is as large as possible. Note that E′ is semistable of slope λ: it cannot
admit a subbundle of larger slope, because that would contradict the maximality of λ.

Set E′′ = E /E′. Then E′′ is a vector bundle whose rank is smaller than E. It follows from our inductive
hypothesis that E′′ admits a Harder-Narasimhan filtration

0 = E′′0 ( E′′1 ⊆ · · · ( E′′m = E′′,

so that the slopes λi = slope(E′′i /E
′′
i−1) form a decreasing sequence λ1 > λ2 > λ3 > · · · > λm. For 0 ≤ i ≤ m,

let E
′′
i ⊆ E denote the inverse image of E′′i , so that E

′′
0 = E′. We will complete the proof by showing that

0 ( E′ = E0 ( E
′′
1 ( · · · ( E

′′
m = E

is a Harder-Narasimhan filtration of E. By construction, the successive quotients of this filtration are given
by E′ and E′′i /E

′′
i , which are semistable of slopes λ and λi, respectively. It will therefore suffice to show that

we have inequalities λ > λ1 > λ2 > · · · > λm. Assume, for a contradiction, that this fails: that is, we have
λ ≤ λ1. We have an exact sequence

0→ E′ → E
′′
1 → E′′1 → 0,

satisfying slope(E′) = λ and slope(E′′1) = λ1. Applying Exercise 1, we deduce that slope(E
′′
1) ≥ λ. This is

impossible: we cannot have slope(E
′′
1) > λ (since λ was chosen to be the largest element of S), and we cannot

have slope(E
′′
1) = λ (since E′ was chosen to be maximal among subbundles of E having slope λ).
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