Lecture 20: The Harder-Narasimhan Filtration

November 19, 2018

Throughout this lecture, we fix an algebraically closed perfectoid field C^{\flat} of characteristic p. Let X denote the Fargues-Fontaine curve, given by

$$X = \operatorname{Proj}(\bigoplus_{n \ge 0} B^{\varphi = p^n}).$$

Our goal in this lecture is to show that every vector bundle \mathcal{E} on X admits a canonical Harder-Narasimhan filtration (just as if X were an algebraic curve defined over a field).

We begin with some generalities. Recall that, if \mathcal{E} is a nonzero vector bundle on X, the *slope* slope(\mathcal{E}) is defined by the formula

$$slope(\mathcal{E}) = \frac{\deg(\mathcal{E})}{\operatorname{rank}(\mathcal{E})}.$$

Exercise 1. Let $0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0$ be a short exact sequence of nonzero vector bundles on X, so that we have equalities

 $\deg(\mathcal{E}) = \deg(\mathcal{E}') + \deg(\mathcal{E}'') \qquad \operatorname{rank}(\mathcal{E}) = \operatorname{rank}(\mathcal{E}') + \operatorname{rank}(\mathcal{E}'').$

Using this, show that:

- If $slope(\mathcal{E}') = slope(\mathcal{E}'')$, then $slope(\mathcal{E}') = slope(\mathcal{E}) = slope(\mathcal{E}'')$.
- If $slope(\mathcal{E}') < slope(\mathcal{E}'')$, then $slope(\mathcal{E}') < slope(\mathcal{E}) < slope(\mathcal{E}'')$.
- If $slope(\mathcal{E}') > slope(\mathcal{E})$, then $slope(\mathcal{E}') > slope(\mathcal{E}) > slope(\mathcal{E}'')$.

Remark 2. Let \mathcal{E} be a vector bundle on X and let $\mathcal{E}' \subsetneq \mathcal{E}$ be a subsheaf which is a vector bundle of the same rank (so that the quotient $\mathcal{E}'' = \mathcal{E} / \mathcal{E}'$ is a coherent sheaf with finite support on X). Then deg(\mathcal{E}') < deg(\mathcal{E}) and therefore slope(\mathcal{E}') < slope(\mathcal{E}). To prove this, we can replace \mathcal{E} and \mathcal{E}' by their top exterior powers and thereby reduce to the case where \mathcal{E} and \mathcal{E}' are line bundles, in which case the result is obvious (since there are no nonzero maps from $\mathcal{O}(m)$ to $\mathcal{O}(n)$ for m > n, and every nonzero map from $\mathcal{O}(n)$ to itself is an isomorphism). Note that this can be regarded as a degenerate version of Exercise 1, where we adopt the convention that slope(\mathcal{E}'') = ∞ .

Definition 3. Let \mathcal{E} be a nonzero vector bundle on X and let λ be a rational number. We say that \mathcal{E} is *semistable of slope* λ if slope(\mathcal{E}) = λ and, for every nonzero subbundle $\mathcal{E}' \subseteq \mathcal{E}$, we have slope(\mathcal{E}') $\leq \lambda$. By convention, we say that the zero vector bundle is semistable of every slope.

Remark 4. Let \mathcal{E} be a vector bundle on X which is semistable of slope λ and let $\mathcal{E}' \subseteq \mathcal{E}$ be a coherent subsheaf. Then \mathcal{E}' is also a vector bundle, but not necessarily a vector subbundle (since the quotient \mathcal{E}/\mathcal{E}' might not be a vector bundle). However, \mathcal{E}' is always contained in a vector subbundle $\overline{\mathcal{E}}' \subseteq \mathcal{E}$ of the same rank. Using Remark 2 we obtain

$$\operatorname{slope}(\mathcal{E}') \leq \operatorname{slope}(\overline{\mathcal{E}}') \leq \lambda$$

Moreover, the first inequality is strict if \mathcal{E}' is not a subbundle of \mathcal{E} .

Proposition 5. Let \mathcal{E} be a vector bundle on X which is semistable of rank λ . For any surjection of vector bundles $\mathcal{E} \twoheadrightarrow \mathcal{E}''$, we have slope $(\mathcal{E}'') \geq \lambda$.

Proof. We have an exact sequence $0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0$, and the semistability of \mathcal{E} gives $\operatorname{slope}(\mathcal{E}') \leq \operatorname{slope}(\mathcal{E}) = \lambda$. Applying Exercise 1, we see that $\operatorname{slope}(\mathcal{E}'') \geq \lambda$.

Corollary 6. Let \mathcal{E} and \mathcal{F} be semistable vector bundles of slopes λ and μ . If $\lambda > \mu$, then every map of vector bundles $f : \mathcal{E} \to \mathcal{F}$ vanishes.

Proof. If $f \neq 0$, then the image Im(f) is a nonzero coherent subsheaf of \mathcal{F} , hence a vector bundle of rank > 0. Remark 4 and Proposition 5 then give

$$\lambda = \operatorname{slope}(\mathcal{E}) \leq \operatorname{slope}(\operatorname{Im}(f)) \leq \operatorname{slope}(\mathcal{F}) = \mu,$$

contradicting our assumption that $\lambda > \mu$.

Proposition 7. Let $f : \mathcal{E} \to \mathcal{F}$ be a map of vector bundles on \mathcal{E} which are semistable of slope λ . Then $\ker(f)$ and $\operatorname{coker}(f)$ (formed in the category of coherent sheaf on X) are vector bundles.

Proof. If f = 0, there is nothing to prove. Otherwise, we again have inequalities

 $\lambda = \operatorname{slope}(\mathcal{E}) \leq \operatorname{slope}(\operatorname{Im}(f)) \leq \operatorname{slope}(\mathcal{F}) = \lambda.$

It follows that equality must hold in both cases, so that Im(f) has slope λ . Moreover, Remark 4 shows that it is a vector subbundle of \mathcal{F} , so that coker(f) is a vector bundle on X and we have exact sequences

$$0 \to \ker(f) \to \mathcal{E} \to \operatorname{Im}(f) \to 0$$
$$0 \to \operatorname{Im}(f) \to \mathcal{F} \to \operatorname{coker}(f) \to 0.$$

Applying Exercise 1, we conclude that ker(f) and coker(f) (if nonzero) also have slope λ . Every subbundle of ker(f) can also be regarded as a subbundle of \mathcal{E} , and therefore has slope $\leq \lambda$ by virtue of our assumption that \mathcal{E} is semistable. This proves the ker(f) is semistable of slope λ . We claim that coker(f) is also semistable of slope λ . Assume otherwise: then there exists a subbundle $\overline{\mathcal{F}}' \subseteq \operatorname{coker}(f)$ of slope $> \lambda$. Let \mathcal{F}' be the inverse image of $\overline{\mathcal{F}}'$ in \mathcal{F} , so that we have an exact sequence

$$0 \to \operatorname{Im}(f) \to \mathcal{F}' \to \overline{\mathcal{F}}' \to 0$$

Applying Exercise 1, we deduce that $slope(\mathcal{F}') > \lambda$, contradicting the semistability of \mathcal{F} .

Proposition 8. Let $0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0$ be an exact sequence of vector bundles on X. If \mathcal{E}' and \mathcal{E}'' are semistable of slope λ , then so is \mathcal{E} .

Proof. Exercise 1 shows that \mathcal{E} has slope λ . Let $\mathcal{F} \subseteq \mathcal{E}$ be any vector subbundle. Let $\mathcal{F}' = \mathcal{F} \cap \mathcal{E}'$ and let \mathcal{F}'' be the image of \mathcal{F} in \mathcal{E}'' . Then \mathcal{F}' and \mathcal{F}'' are vector bundles which can be regarded as subsheaves of \mathcal{E}' and \mathcal{E}'' , respectively, so Remark 4 implies that slope(\mathcal{F}'), slope(\mathcal{F}'') $\leq \lambda$. Using the exact sequence

$$0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$$

we deduce that $slope(\mathcal{F}) \leq \lambda$.

Corollary 9. Let $\operatorname{Coh}(X)$ denote the category of coherent sheaves on X and let $\operatorname{Vect}_{\lambda}(X) \subseteq \operatorname{Coh}(X)$ denote the full subcategory whose objects are vector bundles on X which are semistable of slope 0. Then $\operatorname{Vect}_{\lambda}(X)$ is closed under kernels, cokernels, and extensions in $\operatorname{Coh}(X)$. In particular, it is an abelian category.

Warning 10. The collection of *all* vector bundles on X does not form an abelian category (note that if $f : \mathcal{E} \to \mathcal{F}$ is a map of vector bundles, then in general the cokernel $\operatorname{coker}(f)$ in the category of coherent sheaves is not a vector bundle).

Definition 11. Let \mathcal{E} be a vector bundle on X. We say that a filtration

$$0 = \mathcal{E}_0 \subsetneq \mathcal{E}_1 \subseteq \mathcal{E}_2 \subsetneq \cdots \subseteq \mathcal{E}_m = \mathcal{E}_0$$

is a Harder-Narasimhan filtration if the following conditions are satisfied:

- Each of the quotient vector bundles $\mathcal{E}_i / \mathcal{E}_{i-1}$ is semistable of some slope λ_i .
- The slopes λ_i are strictly decreasing: that is, we have $\lambda_1 > \lambda_2 > \cdots > \lambda_m$.

Theorem 12. Let \mathcal{E} be a vector bundle on X. Then \mathcal{E} has a unique Harder-Narasimhan filtration.

Let us first establish uniqueness. We will proceed by induction on the rank r of \mathcal{E} . Suppose that \mathcal{E} is equipped with two Harder-Narasimhan filtrations

$$0 = \mathcal{E}_0 \subsetneq \mathcal{E}_1 \subseteq \mathcal{E}_2 \subsetneq \cdots \subseteq \mathcal{E}_m = \mathcal{E}$$
$$0 = \mathcal{E}'_0 \subsetneq \mathcal{E}'_1 \subseteq \mathcal{E}'_2 \subsetneq \cdots \subseteq \mathcal{E}'_n = \mathcal{E}.$$

where the successive quotients have slopes $\lambda_1 > \cdots > \lambda_m$ and $\lambda'_1 > \cdots > \lambda'_n$, respectively. We wish to show that these filtrations are the same. We will show that $\mathcal{E}_1 = \mathcal{E}'_1$; the desired result will then follow by applying the inductive hypothesis to the filtrations

$$0 = \mathcal{E}_1 / \mathcal{E}_1 \subseteq \mathcal{E}_2 / \mathcal{E}_1 \subsetneq \cdots \subseteq \mathcal{E}_m / \mathcal{E}_1 = \mathcal{E} / \mathcal{E}_1$$
$$0 = \mathcal{E}'_1 / \mathcal{E}'_1 \subseteq \mathcal{E}'_2 / \mathcal{E}'_1 \subsetneq \cdots \subseteq \mathcal{E}'_n / \mathcal{E}'_1 = \mathcal{E} / \mathcal{E}'_1.$$

We first claim that $\lambda_1 = \lambda'_1$. Suppose otherwise. Then we may assume without loss of generality that $\lambda_1 > \lambda'_1$. It follows that $\lambda_1 > \lambda'_i$ for $1 \le i \le n$. Applying Corollary 6, we conclude that $\operatorname{Hom}(\mathcal{E}_1, \mathcal{E}'_i / \mathcal{E}'_{i-1}) = 0$. Since \mathcal{E} admits a finite filtration whose successive quotients are $\mathcal{E}'_i / \mathcal{E}'_{i-1}$, it follows that $\operatorname{Hom}(\mathcal{E}_1, \mathcal{E}) = 0$. This is a contradiction, since the inclusion map $\mathcal{E}_1 \hookrightarrow \mathcal{E}$ is a nonzero element of $\operatorname{Hom}(\mathcal{E}_1, \mathcal{E})$.

The equality $\lambda_1 = \lambda'_1$ guarantees that we have a strict inequality $\lambda_1 > \lambda'_i$ for i > 1. As above, we conclude that $\operatorname{Hom}(\mathcal{E}_1, \mathcal{E}'_i / \mathcal{E}'_{i-1}) = 0$. Since the quotient bundle $\mathcal{E} / \mathcal{E}'_1$ admits a finite filtration whose successive quotients have the form $\mathcal{E}'_i / \mathcal{E}'_{i-1}$ with i > 1, it follows that $\operatorname{Hom}(\mathcal{E}_1, \mathcal{E} / \mathcal{E}'_1)$ vanishes. In particular, the composite map

$$\mathcal{E}_1 \hookrightarrow \mathcal{E} \twoheadrightarrow \mathcal{E} / \mathcal{E}'_1$$

must be zero, so we must have $\mathcal{E}_1 \subseteq \mathcal{E}'_1$. Applying the same argument with the roles of \mathcal{E}_1 and \mathcal{E}'_1 reversed, we deduce that $\mathcal{E}'_1 \subseteq \mathcal{E}_1$. We therefore have equality $\mathcal{E}_1 = \mathcal{E}'_1$, which (together with our inductive hypothesis) proves the uniqueness part of Theorem 12. To prove existence, we need the following:

Lemma 13. Let \mathcal{E} be a vector bundle on X. Then there exists an integer $N(\mathcal{E})$ with the following property: for every coherent subsheaf $\mathcal{F} \subseteq \mathcal{E}$, we have $\deg(\mathcal{F}) \leq N(\mathcal{E})$.

Proof. We proceed by induction on the rank of \mathcal{E} . Note that if \mathcal{E} is a line bundle, then every subsheaf $\mathcal{F} \subseteq \mathcal{E}$ is either a line bundle of smaller degree or zero; we can therefore take $N(\mathcal{E}) = \max(\deg(\mathcal{E}), 0)$. To handle the general case, we observe that if \mathcal{E} has rank > 1 then we can choose an exact sequence of vector bundles

$$0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0,$$

where \mathcal{E}' and \mathcal{E}'' have smaller rank (for example, we can take \mathcal{E}' to be the line subbundle of \mathcal{E} determined by any rational section of \mathcal{E}). If \mathcal{F} is a coherent subsheaf of \mathcal{E} , then \mathcal{F} fits into an exact sequence

$$0\to {\mathfrak F}'\to {\mathfrak F}\to {\mathfrak F}''\to 0$$

where $\mathcal{F}' = \mathcal{F} \cap \mathcal{E}'$ and \mathcal{F}'' is a subsheaf of \mathcal{E}'' . We then have

$$\deg(\mathcal{F}) = \deg(\mathcal{F}') + \deg(\mathcal{F}'') \le N(\mathcal{E}') + N(\mathcal{E}''),$$

so setting $N(\mathcal{E}) = N(\mathcal{E}') + N(\mathcal{E}'')$ satisfies the requirements of Lemma 13.

Proof of Theorem 12. Let \mathcal{E} be a vector bundle on X; we wish to show that \mathcal{E} admits a Harder-Narasimhan filtration. We proceed by induction on the rank rank(\mathcal{E}). Let S be the collection of all rational numbers of the form slope(\mathcal{E}'), where $\mathcal{E}' \subseteq \mathcal{E}$ is a nonzero subbundle. It follows from Lemma 13 that S has a largest element. Let λ denote the largest element of S. Then there exists a nonzero subbundle $\mathcal{E}' \subseteq \mathcal{E}$ of slope λ . Choose such a subbundle whose rank is as large as possible. Note that \mathcal{E}' is semistable of slope λ : it cannot admit a subbundle of larger slope, because that would contradict the maximality of λ .

Set $\mathcal{E}'' = \mathcal{E} / \mathcal{E}'$. Then \mathcal{E}'' is a vector bundle whose rank is smaller than \mathcal{E} . It follows from our inductive hypothesis that \mathcal{E}'' admits a Harder-Narasimhan filtration

$$0 = \mathcal{E}_0'' \subsetneq \mathcal{E}_1'' \subseteq \cdots \subsetneq \mathcal{E}_m'' = \mathcal{E}'',$$

so that the slopes $\lambda_i = \text{slope}(\mathcal{E}''_i / \mathcal{E}''_{i-1})$ form a decreasing sequence $\lambda_1 > \lambda_2 > \lambda_3 > \cdots > \lambda_m$. For $0 \le i \le m$, let $\overline{\mathcal{E}}''_i \subseteq \mathcal{E}$ denote the inverse image of \mathcal{E}''_i , so that $\overline{\mathcal{E}}''_0 = \mathcal{E}'$. We will complete the proof by showing that

$$0 \subsetneq \mathcal{E}' = \overline{\mathcal{E}}_0 \subsetneq \overline{\mathcal{E}}_1'' \subsetneq \cdots \subsetneq \overline{\mathcal{E}}_m'' = \mathcal{E}$$

is a Harder-Narasimhan filtration of \mathcal{E} . By construction, the successive quotients of this filtration are given by \mathcal{E}' and $\mathcal{E}''_i / \mathcal{E}''_i$, which are semistable of slopes λ and λ_i , respectively. It will therefore suffice to show that we have inequalities $\lambda > \lambda_1 > \lambda_2 > \cdots > \lambda_m$. Assume, for a contradiction, that this fails: that is, we have $\lambda \leq \lambda_1$. We have an exact sequence

$$0 \to \mathcal{E}' \to \overline{\mathcal{E}}_1'' \to \mathcal{E}_1'' \to 0,$$

satisfying $\operatorname{slope}(\mathcal{E}') = \lambda$ and $\operatorname{slope}(\mathcal{E}''_1) = \lambda_1$. Applying Exercise 1, we deduce that $\operatorname{slope}(\overline{\mathcal{E}}''_1) \ge \lambda$. This is impossible: we cannot have $\operatorname{slope}(\overline{\mathcal{E}}''_1) > \lambda$ (since λ was chosen to be the largest element of S), and we cannot have $\operatorname{slope}(\overline{\mathcal{E}}''_1) = \lambda$ (since \mathcal{E}' was chosen to be maximal among subbundles of \mathcal{E} having slope λ). \Box