
Lecture 18: Bounded and Meromorphic Functions of p

November 18, 2018

Throughout this lecture, we fix a perfectoid field C[ of characteristic p. Our goal in this lecture is to give
an “intrinsic” description of Ainf = W (O[C) as a subring of B: roughly speaking, it consists of “holomorphic”
functions on Y whose value at any point y ∈ Y belongs to the valuation ring OKy

of the perfectoid field Ky

corresponding to y.

Theorem 1. Let f be a nonzero element of B. The following conditions are equivalent:

(1) For each ρ ∈ (0, 1), we have |f |ρ ≤ 1.

(2) The element f belongs to the subring Ainf ⊆ B.

Corollary 2. Let f be a nonzero element of B. Then:

• The element f belongs to the localization Ainf [
1
p ] if and only if there exists an integer n such that

|f |ρ ≤ ρn for all ρ ∈ (0, 1).

• The element f belongs to the localization Ainf [
1
[π] ] if and only if there exists a constant C > 0 satisfying

|f |ρ ≤ C for all ρ ∈ (0, 1).

• The element f belongs to the localization Ainf [
1
p ,

1
[π] ] if and only if there exists a constant C > 0 and

an integer n satisfying |f |ρ ≤ Cρn for all ρ ∈ (0, 1).

We will deduce Theorem 1 from the following weaker assertion:

Lemma 3. Let f be an element of B. Suppose that there exists an integer m such that

|f |ρ ≤ ρm

for all 0 < ρ < 1. Then we can write
f = [c]pm + g,

where c ∈ O[C and g satisfies an inequality of the form |g|ρ ≤ ρm+1.

Proof of Theorem 1 from Lemma 3. The implication (2) ⇒ (1) is immediate. Conversely, suppose that (1)

is satisfied, and set f0 = f . Applying Lemma 3, we can write f0 = [c0] +f1, where [c0] ∈ O[C , and f1 satisfies

|f1|ρ ≤ ρ for all ρ ∈ (0, 1). Applying Lemma 3 again, we can write f1 = [c1]p + f2, where c1 ∈ O[C and f2
satisfies |f2|ρ ≤ ρ for all ρ ∈ (0, 1). Continuing in this way, we obtain a sequence of elements f0, f1, f2, . . . ∈ B
and c0, c1, c2, . . . ∈ O[C satisfying

f0 = [c0] + [c1]p+ · · ·+ [cn−1]pn−1 + fn

|fn|ρ ≤ ρn.
Note that the sequence {fn}n≥0 converges to zero with respect to the each of the Gauss norms | • |ρ. It
follows that the infinite sum

∑
n≥0[cn]pn converges in B to f , so that f belongs to Ainf as desired.
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Proof of Lemma 3. Replacing f by f
pm , we can reduce to the case m = 0. In this case, we have an element

f ∈ B satisfying |f |ρ ≤ 1 for all ρ ∈ (0, 1); we wish to write f = [c] + g for c ∈ O[C , where g satisfies |g|ρ ≤ ρ
for all ρ ∈ (0, 1).

Choose a sequence f1, f2, . . . ∈ Ainf [
1
p ,

1
[π] ] which converges to f in B. Each fi then admits a unique

Teichmüller expansion

fi =
∑

n�−∞
[cn,i]p

n.

Set f+i =
∑
n≥0[cn,i]p

n. We claim that the sequence f+1 , f
+
2 , . . . also converges to f in B. To prove this, we

must show that for each ρ ∈ (0, 1), we have

lim
i→∞

|fi − f+i |ρ = 0.

Let ε be a small positive real number. Then the sequence f1, f2, . . . converges to f with respect to the
Gauss norm | • |ε·ρ. It follows that, for i sufficiently large (depending on ε), we have

|fi|ε·ρ = |f |ε·ρ ≤ 1.

For such i, we have
|c−n,i|C[(ερ)−n ≤ 1.

If n is positive, this gives
|c−n,i|C[ρ−n ≤ εn ≤ ε.

We therefore have
|fi − f+i |ρ = sup

n>0
(|c−n,i|C[ρ−n) ≤ ε

for sufficiently large i.

Replacing the sequence {fi} with {f+i }, we may assume that each fi admits a Teichmüller expansion of
the form

fi =
∑
n≥0

[cn,i]p
n.

Then, for every pair of indices i and j, the difference fi − fj admits a Teichmüller expansion of the form
[c0,i − c0,j ] + higher order terms. For any ρ ∈ (0, 1), we have

|fi − fj |ρ ≥ |c0,i − c0,j |C[ .

Since the sequence {fi} is Cauchy with respect to the Gauss norm | • |ρ, it follows that {c0,i} is a Cauchy
sequence in the field C[. Since C[ is complete, this Cauchy sequence converges to some element c ∈ C[.
Moreover, for i� 0, we have

|c0,i|C[ ≤ |fi|ρ = |f |ρ ≤ 1,

so that c0,i belongs to O[C (for i� 0) and therefore c ∈ O[C .

Exercise 4. Show that, if {ci} is a Cauchy sequence in O[C converging to a point c ∈ O[C , then we have
[c] = limi→∞[ci] in the ring B.

For each i, set gi = fi − [c0,i] =
∑
n>0[cn,i]p

i. Applying the exercise, we see that the limit limi→∞ gi
exists and is given by

lim
i→∞

gi = ( lim
i→∞

fi)− ( lim
i→∞

[c0,i]) = f − [c].

That is, we can write f = [c] + g, where g = limi→∞ gi. We will complete the proof by showing that |g|ρ ≤ ρ
for all ρ ∈ (0, 1), or equivalently that vs(g) ≥ s for all s ∈ R>0.

2



Let us assume that g 6= 0 (otherwise there is nothing to prove). Passing to a subsequence, we may then
also assume that gi 6= 0 for all i. Each gi admits a Teichmüller expansion where only positive powers of
p occur, so that the piecewise linear function v•(gi) has strictly positive slopes. When restricted to any
compact interval I ⊆ R>0, the function v•(g) agrees with v•(gi) for i � 0. It follows that the piecewise
linear function s 7→ vs(g) also has strictly positive (and integral) slopes. Suppose, for a contradiction, that
there exists some s > 0 such that vs(g) < s. Choose 0 < s′ < s such that vs(g) − s + s′ < 0. Since the
function v•(g) is piecewise linear with slopes ≥ 1 everywhere, we have

vs′(g) ≤ vs(g)− s+ s′ < 0.

Setting ρ′ = e−s
′
, we have |g|ρ′ > 1. Then

1 < |g|ρ′ = |f − [c]|ρ′ ≤ max(|f |ρ′ , |[c]|ρ′) = max(|f |ρ′ , |c|C[) ≤ 1,

which is a contradiction.

From Theorem 1, it is easy to describe the invariant subring Bϕ=1 ⊆ B:

Theorem 5. The unit map Qp → Bϕ=1 is an isomorphism.

Lemma 6. Let f be a nonzero element of Bϕ=1. Then there exists an integer n such that |f |ρ = ρn for all
0 < ρ < 1.

Proof. Note that for 0 < ρ < 1, we have

|f |pρ = |ϕ(f)|ρp = |f |ρp .

In other words, the function s 7→ vs(f) satisfies the identity vps(f) = pvs(f). Differentiating both sides (on
the left) with respect to s and dividing by p, we obtain ∂−vps(f) = ∂−vs(f). Since the function s 7→ vs(f) is
concave, the function s 7→ ∂−vs(f) is nondecreasing; the above equality implies that it is constant. In other
words, s 7→ vs(f) is a linear function of s, which we can write as vs(f) = ns+ r for some integer n and some
real number r. The equality vps(f) = pvs(f) then implies that r = 0, so that vs(f) = ns for all s > 0 and
therefore |f |ρ = ρn for all 0 < ρ < 1.

Proof of Theorem 5. Let f be a nonzero element of Bϕ=1. It follows from Lemma 6 and Corollary 2 that f
belongs to the subring Ainf [

1
p ] ⊆ B. That is, f admits a unique Teichmüller expansion

f =
∑

n�−∞
[cn]pn,

where each cn belongs to O[C . We then have∑
n�−∞

[cn]pn = f = ϕ(f) =
∑

n�−∞
[cpn]pn,

so that each coefficient cn satisfies cn = cpn in the field C[, and therefore belongs to the finite field Fp ⊆ C[.
The equality f =

∑
n�−∞[cn]pn now shows that f belongs to Qp = W (Fp)[

1
p ], as desired.
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