Lecture 18: Bounded and Meromorphic Functions of p

November 18, 2018

Throughout this lecture, we fix a perfectoid field C* of characteristic p. Our goal in this lecture is to give
an “intrinsic” description of Aj,s = W((‘)bc) as a subring of B: roughly speaking, it consists of “holomorphic”
functions on Y whose value at any point y € Y belongs to the valuation ring O, of the perfectoid field K,
corresponding to y.

Theorem 1. Let f be a nonzero element of B. The following conditions are equivalent:

(1) For each p € (0,1), we have |f|, < 1.
(2) The element f belongs to the subring A C B.
Corollary 2. Let f be a nonzero element of B. Then:
o The element f belongs to the localization Ainf[%)] if and only if there exists an integer n such that
|flp < p™ forall p € (0,1).

e The element f belongs to the localization Ainf[ﬁ] if and only if there exists a constant C > 0 satisfying
|fl, < C forall p€(0,1).
e The element f belongs to the localization Ainf[%, ﬁ] if and only if there exists a constant C > 0 and

an integer n satisfying |f|, < Cp™ for all p € (0,1).

We will deduce Theorem 1 from the following weaker assertion:

Lemma 3. Let f be an element of B. Suppose that there exists an integer m such that

|f|p <p™
for all0 < p < 1. Then we can write
f=ldp™ +g,

where ¢ € Obc and g satisfies an inequality of the form |g|, < p™T1.

Proof of Theorem 1 from Lemma 3. The implication (2) = (1) is immediate. Conversely, suppose that (1)
is satisfied, and set fo = f. Applying Lemma 3, we can write fo = [co] + f1, where [co] € (‘)bc, and fi satisfies
|filp, < p for all p € (0,1). Applying Lemma 3 again, we can write fi = [c1]p + f2, where ¢ € Obc and fo
satisfies |f2|, < p for all p € (0,1). Continuing in this way, we obtain a sequence of elements fo, f1, f2,... € B

and cg,c1,C2,... € Obc satisfying
fo=leol +erlp+ -+ [ea]p" 4 f
|f n|p < pn~
Note that the sequence {f,},>0 converges to zero with respect to the each of the Gauss norms |e |,. It
follows that the infinite sum >, - [c,]p™ converges in B to f, so that f belongs to Aj,s as desired. O



Proof of Lemma 3. Replacing f by pim, we can reduce to the case m = 0. In this case, we have an element

f € B satistying |f|, <1 for all p € (0,1); we wish to write f = [c]+ g for c € Obc, where g satisfies |g|, < p
for all p € (0,1).

Choose a sequence f1, fo,... € Ainf[%, ﬁ] which converges to f in B. Each f; then admits a unique
Teichmiiller expansion
fi= Z [Cn,i}pn'
n>—oo
Set f; = Y nsolcn,ilp™. We claim that the sequence fi, fo, - .. also converges to f in B. To prove this, we

must show that for each p € (0,1), we have
lim |f; — f¥], = 0.
71— 00

Let € be a small positive real number. Then the sequence fi, f,... converges to f with respect to the
Gauss norm | e |.,. It follows that, for ¢ sufficiently large (depending on ¢€), we have

|fi‘e~p = |f|€~p <1

For such i, we have
emniles (ep)™™ < 1.
If n is positive, this gives
lconjilerp™™ S €' <

We therefore have
\fi = [l = sup(le—nilcrp™™) < e
n>0

for sufficiently large 3.

Replacing the sequence {f;} with {f;"}, we may assume that each f; admits a Teichmiiller expansion of

the form
fi = lenilp™

n>0

Then, for every pair of indices 7 and j, the difference f; — f; admits a Teichmiiller expansion of the form
[co,i — co,;] + higher order terms. For any p € (0,1), we have

|fi — filp = |coi — cojleo-

Since the sequence {f;} is Cauchy with respect to the Gauss norm | e |,, it follows that {co;} is a Cauchy
sequence in the field C*. Since C” is complete, this Cauchy sequence converges to some element ¢ € C”.
Moreover, for ¢ > 0, we have

lcoiler < |filo = 1Flp < 1,
so that ¢ ; belongs to O, (for i > 0) and therefore ¢ € OF,.

Exercise 4. Show that, if {¢;} is a Cauchy sequence in Obo converging to a point ¢ € Obc, then we have
[c] = lim;_, 0 [¢;] in the ring B.

For each i, set g; = fi — [cos] = En>0[cn,i]pi. Applying the exercise, we see that the limit lim; .. g;
exists and is given by
lim g; = (lim f;) — (lim [co4]) = f — [¢].
11— 00 11— 00 11— 00
That is, we can write f = [c] + g, where g = lim;_,, g;. We will complete the proof by showing that |g|, < p
for all p € (0,1), or equivalently that vs(g) > s for all s € Rx.



Let us assume that g # 0 (otherwise there is nothing to prove). Passing to a subsequence, we may then
also assume that g; # 0 for all i. FEach g; admits a Teichmiiller expansion where only positive powers of
p occur, so that the piecewise linear function ve(g;) has strictly positive slopes. When restricted to any
compact interval I C R, the function ve(g) agrees with ve(g;) for ¢ > 0. It follows that the piecewise
linear function s — vs(g) also has strictly positive (and integral) slopes. Suppose, for a contradiction, that
there exists some s > 0 such that vs(g) < s. Choose 0 < s’ < s such that vs(g) — s + s < 0. Since the
function ve(g) is piecewise linear with slopes > 1 everywhere, we have

ver(9) <wvs(g) — s+ s <O0.
Setting p/ = e~ we have lg|,» > 1. Then

L<lglp = [ =[]l < max(| [y, [[c]]p) = max(| ]y, [elc») <1,

which is a contradiction. O

From Theorem 1, it is easy to describe the invariant subring B¥=! C B:
Theorem 5. The unit map Q, — B*=! s an isomorphism.

Lemma 6. Let f be a nonzero element of B?='. Then there exists an integer n such that |f|, = p" for all
0<p<l

Proof. Note that for 0 < p < 1, we have

15 = le()lpr = |f v

In other words, the function s — vs(f) satisfies the identity v,s(f) = pvs(f). Differentiating both sides (on
the left) with respect to s and dividing by p, we obtain O_uv,s(f) = d_vs(f). Since the function s — vs(f) is
concave, the function s — 9_v,(f) is nondecreasing; the above equality implies that it is constant. In other
words, s — vs(f) is a linear function of s, which we can write as vs(f) = ns+r for some integer n and some
real number r. The equality vps(f) = pvs(f) then implies that r = 0, so that vs(f) = ns for all s > 0 and
therefore |f|, = p" for all 0 < p < 1. O

Proof of Theorem 5. Let f be a nonzero element of B¥=!. It follows from Lemma 6 and Corollary 2 that f
belongs to the subring Ai,¢[1] € B. That is, f admits a unique Teichmiiller expansion

f= Z [en]p",

n=>—oo

where each ¢,, belongs to Obc. We then have

Yoolelr"=Ff=0(f)= > &

n>>—oo n>>—oo

so that each coefficient c,, satisfies ¢, = ¢ in the field C", and therefore belongs to the finite field F,C C’.
The equality f =3, [ca]p™ now shows that f belongs to Q, = W (F,)[1], as desired. O
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